• Title/Summary/Keyword: nilpotent-by-finite groups

Search Result 5, Processing Time 0.017 seconds

GROUPS HAVING MANY 2-GENERATED SUBGROUPS IN A GIVEN CLASS

  • Gherbi, Fares;Trabelsi, Nadir
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.365-371
    • /
    • 2019
  • If 𝖃 is a class of groups, denote by F𝖃 the class of groups G such that for every $x{\in}G$, there exists a normal subgroup of finite index H(x) such that ${\langle}x,h{\rangle}{\in}$ 𝖃 for every $h{\in}H(x)$. In this paper, we consider the class F𝖃, when 𝖃 is the class of nilpotent-by-finite, finite-by-nilpotent and periodic-by-nilpotent groups. We will prove that for the above classes 𝖃 we have that a finitely generated hyper-(Abelian-by-finite) group in F𝖃 belongs to 𝖃. As a consequence of these results, we prove that when the nilpotency class of the subgroups (or quotients) of the subgroups ${\langle}x,h{\rangle}$ are bounded by a given positive integer k, then the nilpotency class of the corresponding subgroup (or quotient) of G is bounded by a positive integer c depending only on k.

CONJUGACY SEPARABILITY OF GENERALIZED FREE PRODUCTS OF FINITELY GENERATED NILPOTENT GROUPS

  • Zhou, Wei;Kim, Goan-Su;Shi, Wujie;Tang, C.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1195-1204
    • /
    • 2010
  • In this paper, we prove a criterion of conjugacy separability of generalized free products of polycyclic-by-finite groups with a non cyclic amalgamated subgroup. Applying this criterion, we prove that certain generalized free products of polycyclic-by-finite groups are conjugacy separable.

FINITE NON-NILPOTENT GENERALIZATIONS OF HAMILTONIAN GROUPS

  • Shen, Zhencai;Shi, Wujie;Zhang, Jinshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1147-1155
    • /
    • 2011
  • In J. Korean Math. Soc, Zhang, Xu and other authors investigated the following problem: what is the structure of finite groups which have many normal subgroups? In this paper, we shall study this question in a more general way. For a finite group G, we define the subgroup $\mathcal{A}(G)$ to be intersection of the normalizers of all non-cyclic subgroups of G. Set $\mathcal{A}_0=1$. Define $\mathcal{A}_{i+1}(G)/\mathcal{A}_i(G)=\mathcal{A}(G/\mathcal{A}_i(G))$ for $i{\geq}1$. By $\mathcal{A}_{\infty}(G)$ denote the terminal term of the ascending series. It is proved that if $G=\mathcal{A}_{\infty}(G)$, then the derived subgroup G' is nilpotent. Furthermore, if all elements of prime order or order 4 of G are in $\mathcal{A}(G)$, then G' is also nilpotent.

FREE ACTIONS OF FINITE ABELIAN GROUPS ON 3-DIMENSIONAL NILMANIFOLDS

  • Choi, Dong-Soon;Shin, Joon-Kook
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.795-826
    • /
    • 2005
  • We study free actions of finite abelian groups on 3­dimensional nilmanifolds. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy. All such actions are completely classified.

CLASSIFICATION OF FREE ACTIONS OF FINITE GROUPS ON 3-DIMENSIONAL NILMANIFOLDS

  • Koo, Daehwan;Oh, Myungsung;Shin, Joonkook
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1411-1440
    • /
    • 2017
  • We study free actions of finite groups on 3-dimensional nil-manifolds with the first homology ${\mathbb{Z}}^2{\oplus}{\mathbb{Z}}_p$. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy.