Browse > Article
http://dx.doi.org/10.4134/BKMS.b180247

GROUPS HAVING MANY 2-GENERATED SUBGROUPS IN A GIVEN CLASS  

Gherbi, Fares (Laboratory of Fundamental and Numerical Mathematics Department of Mathematics University Ferhat Abbas Setif 1)
Trabelsi, Nadir (Laboratory of Fundamental and Numerical Mathematics Department of Mathematics University Ferhat Abbas Setif 1)
Publication Information
Bulletin of the Korean Mathematical Society / v.56, no.2, 2019 , pp. 365-371 More about this Journal
Abstract
If 𝖃 is a class of groups, denote by F𝖃 the class of groups G such that for every $x{\in}G$, there exists a normal subgroup of finite index H(x) such that ${\langle}x,h{\rangle}{\in}$ 𝖃 for every $h{\in}H(x)$. In this paper, we consider the class F𝖃, when 𝖃 is the class of nilpotent-by-finite, finite-by-nilpotent and periodic-by-nilpotent groups. We will prove that for the above classes 𝖃 we have that a finitely generated hyper-(Abelian-by-finite) group in F𝖃 belongs to 𝖃. As a consequence of these results, we prove that when the nilpotency class of the subgroups (or quotients) of the subgroups ${\langle}x,h{\rangle}$ are bounded by a given positive integer k, then the nilpotency class of the corresponding subgroup (or quotient) of G is bounded by a positive integer c depending only on k.
Keywords
nilpotent-by-finite groups; finite-by-nilpotent groups; periodic-by-nilpotent groups; Engel elements; hyper-(Abelian-by-finite) groups;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Hammoudi, Burnside and Kurosh problems, Internat. J. Algebra Comput. 14 (2004), no. 2, 197-211.   DOI
2 H. Heineken and I. J. Mohamed, A group with trivial centre satisfying the normalizer condition, J. Algebra 10 (1968), 368-376.   DOI
3 J. C. Lennox, Bigenetic properties of finitely generated hyper-(abelian-by-finite) groups, J. Austral. Math. Soc. 16 (1973), 309-315.   DOI
4 J. C. Lennox and J. E. Roseblade, Centrality in finitely generated soluble groups, J. Algebra 16 (1970), 399-435.   DOI
5 A. I. Maltsev, Homomorphisms onto finite groups, Ivanov Gos. Ped. Inst. Uchen Zap. Fiz-Mat. Nauki 8 (1958), 49-60.
6 D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Part 2, Springer-Verlag, New York, 1972.
7 C. J. B. Brookes, Engel elements of soluble groups, Bull. London Math. Soc. 18 (1986), no. 1, 7-10.   DOI
8 E. S. Golod, Some problems of Burnside type, Amer. Math. Soc. Transl. Ser. 2 84 (1969), 83-88.
9 M. De Falco, F. de Giovanni, C. Musella, and N. Trabelsi, A nilpotency-like condition for infinite groups, J. Austral. Math. Soc.; doi:10.1017/S1446788717000416.   DOI
10 S. Franciosi, F. de Giovanni, and Y. P. Sysak, Groups with many polycyclic-by-nilpotent subgroups, Ricerche Mat. 48 (1999), no. 2, 361-378 (2000).