• Title/Summary/Keyword: new strain

Search Result 2,120, Processing Time 0.038 seconds

A Case Study on the Restoration of Collapsed Geosynthetics Reinforced Soil Wall Using Limit Equilibrium and Numerical Analyses (한계평형해석과 수치해석에 의한 붕괴된 보강토 옹벽 복구 사례에 관한 연구)

  • Won, Myoung-Soo;Kim, Hyeong-Joo;Kim, Young-Shin;Choi, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.107-118
    • /
    • 2013
  • Geosynthetic reinforced soil (GRS) walls have been increasingly applied recently due to its numerous geotechnical engineering applications. However failure occurs in some cases of constructed GRS walls. These GRS wall failures are mostly due to the unpredictable characteristics of intensive rainfall. Hence, the need for new and innovative ideas for rehabilitation methods has been getting attention. This paper introduces a case study for the design and restoration method of collapsed GRS wall using Limit equilibrium and Numerical Analyses. Restoration method includes: (1) soil nailing without backfill excavation and (2) reconstruction with GRS wall after collapsed backfill excavation. Analyses results show minimal horizontal displacements and shear strain on the reinforced concrete facing for the restoration case with soil nailing. On the other hand, horizontal displacements are developed in the middle of the mortar block facing and shear strains are developed at the bottom facing with spiral curves for the reconstructed GRS wall after collapsed backfill excavation. Therefore, the collapsed GRS wall was restored with the soil nailing without backfill excavation and its construction procedures are discussed in this paper.

Seismic Design of Reduced Beam Section (RBS) Steel Moment Connections with Bolted Web Attachment (보 웨브를 볼트 접합한 RBS 철골모멘트접합부의 내진설계)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.87-96
    • /
    • 2004
  • Recent test results on reduced beam section (RBS) steel moment connections showed that specimens with a bolted web tended to perform poorly due to premature brittle fracture of the beam flange at the weld access hole. The measured strain data appeared to imply that a higher incidence of base metal fracture in bolted-web specimens is related to, at least in part, the increased demand on the beam flanges due to the web bolt slippage and the actual load transfer mechanism which is completely different from that usually assumed in connection design. In this paper, the practice of providing web bolts uniformly along the beam depth was brought into question. A new seismic design procedure, which is more consistent with the actual load path identified from the analytical and experimental studies, was proposed together with improved connection details.

해양환경하에서의 알루미늄 합금 선박용 재료의 기계적 특성과 전기화학적 특성 평가

  • 김성종;고재용;정석기;김정일
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.161-165
    • /
    • 2005
  • Recently, it is on the increase interest for Al alloy with new material for ship application to substitute for FRP ship. The reason is thatAl alloy ship has beneficial characteristics such as high sea speed, increase of loadage and easy to recycle compared with FRP ship. In this paper, mechanical and electrochemical properties are investigated by slow strain rate test experiment in various applied potential condition. These results will provide as reference data to design ship by deciding optimum protection potential regard to hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys are not corroded with forming film which has the corrosion resistance property in neutral solution. However, it was observed that formation and destruction of passive film by $Cl^-$ ion in sea water environment. At comparison of current density after 1200 sec in potentiostatic experiment, the current density in the potential range of -0.68 $\~$-1.5 V is shown low value. The low current density means protection potential range. Elongation in applied potential of 0 V was high. However, the corrosion protection application in this condition is impossible potential because the toughness is low value by decreasing strength by active dissolution reaction at parallel part of specimen. The film composed with $CaCO_3$ and $Mg(OH)_2$ has a corrosion resistance property. However, the uniform electrodeposition coating at below -1.6 V potential is not formed since the time to form the uniform electrodeposition coating is short. Therefore, it is concluded that mechanical property is poor because effect by hydrogen gas generation is larger than that of electrodeposition coating. It is concluded that the optimum protection potential range from comparison of_maxim urn tensile strength, elongation and time to fracture is -1.3$\~$0.7 V (SSCE).

  • PDF

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

Characteristics of NOx Emission in a Swirl Flow in Nonpremixed Turbulent Hydrogen Jet with Coaxial Air (수소 난류 확산화염에서의 선회류에 의한 배기배출물 특성)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The effect of swirl flow on NOx in a nonpremixed turbulent hydrogen jet with coaxial air was studied. The swirl vane angle was varied from $30^{\circ}$ to $90^{\circ}$. The fuel jet air velocity and coaxial air velocity were varied in an attached flame region as $u_F=85{\sim}160m/s$ and $u_A=7{\sim}14m/s$. The objective of the current study was to analyze the characteristics of nitrous oxide emission in a swirl flow and to propose a new parameter for EINOx scaling. The experimental results show that EINOx decreases with the swirl vane angle and increased with flame length. Further, EINOx scaling factors can be determined by considering the effective diameter ($d_{F,eff}$) in a far field concept. The EINOx increased in proportion to the flame residence time (${\sim}{\tau_R}^{1/2.8}$) and the global strain rate (${\sim}{S_G}^{1/2.8}$).

Characteristics of a new cultivar Pleurotus ostreatus, Hwaseong #2 (신품종 느타리버섯 '화성2호'의 특성)

  • Lee, Jeong-Woo;Han, Yong-Sik;Han, Chul-Hee;Jeong, Chong-Chun
    • Journal of Mushroom
    • /
    • v.9 no.3
    • /
    • pp.96-100
    • /
    • 2011
  • MST247ns(Hwaseong #2) was developed by the method of Di-mon mating between monokaryotic strains derived from "Hwaseong #1" and dikaryotic strain "Suhan #1". The optimum temperature of mycelial growth was $25-30^{\circ}C$. The optimum temperature of primordia formation and fruiting body development were $8-15^{\circ}C$ and $9-14^{\circ}C$. Days of primordia formation were 4-5 days later Suhan #1. The stipes were longer than "Suhan #1". The surfaces of stipe were white and the tissues got harder and more elastic. Therefore, the management of growth environment under low temperatures was relatively easy and storability got much better.

Dynamic Magnetostriction Characteristics of an Fe-Based Nanocrystalline FeCuNbSiB Alloy

  • Chen, Lei;Li, Ping;Wen, Yumei
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.211-215
    • /
    • 2011
  • The dynamic magnetostriction characteristics of an Fe-based nanocrystalline FeCuNbSiB alloy are investigated as a function of the dc bias magnetic field. The experimental results show that the piezomagnetic coefficient of FeCuNbSiB is about 2.1 times higher than that of Terfenol-D at the low dc magnetic bias $H_{dc}$ = 46 Oe. Moreover, FeCuNbSiB has a large resonant dynamic strain coefficient at quite low Hdc due to a high mechanical quality factor, which is 3-5 times greater than that of Terfenol-D at the same low $H_{dc}$. Based on such magnetostriction characteristics, we fabricate a new type of transducer with FeCuNbSiB/PZT-8/FeCuNbSiB. Its maximum resonant magnetoelectric voltage coefficient achieves ~10 V/Oe. The ME output power reaches 331.8 ${\mu}W$ at an optimum load resistance of 7 $k{\Omega}$ under 0.4 Oe ac magnetic field, which is 50 times higher than that of the previous ultrasonic-horn-substrate composite transducer and it decreases the size by nearly 86%. The performance indicate that the FeCuNbSiB/PZT-8/FeCuNbSiB transducer is promising for application in highly efficient magnetoelectric energy conversion.

Relationship between the High School Chemistry I, II, and the General Chemistry, and College Students' Cognition about the Subject (대학교 일반화학과 고등학교 화학 I, 화학 II 교과의 연계성 및 일반화학에 대한 대학생들의 인식조사)

  • Moon, Sook-Hee;Lee, Sang-Joa
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.112-123
    • /
    • 2011
  • The chemistry has the academic system in which a concept is jointly developed into the single strain, so the contents of the chemistry I II of the high school are very important in the connection of the general chemistry in the university. At this moment, it is possible for high school graduates to be accepted into science or engineering majors without taking the chemistry II. These the highest intensive election subject cause problems of differences in level of understanding and difficult of quality educations. In this study, we have analyzed similarity between the contents of the chemistry I II and the general chemistry. We also analyzed the cognition level of students without taking the chemistry II in understanding the general chemistry level classes. We found that the high school level chemistry I and II introduced about 27% and 62% of the essential concepts required for the general chemistry, respectively. In a case of M university in Chonnam, about 70% of students in the general chemistry classes have no exposure to the chemistry II in their high schools, causing difficulty of understanding new subjects due to their insufficient concepts for classes. The lack of knowledge caused lowering of learning achievement and decrease of interests in chemistry.