Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.3.211

Dynamic Magnetostriction Characteristics of an Fe-Based Nanocrystalline FeCuNbSiB Alloy  

Chen, Lei (College of Optoelectronic Engineering, Chongqing University, The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education)
Li, Ping (College of Optoelectronic Engineering, Chongqing University, The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education)
Wen, Yumei (College of Optoelectronic Engineering, Chongqing University, The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education)
Publication Information
Abstract
The dynamic magnetostriction characteristics of an Fe-based nanocrystalline FeCuNbSiB alloy are investigated as a function of the dc bias magnetic field. The experimental results show that the piezomagnetic coefficient of FeCuNbSiB is about 2.1 times higher than that of Terfenol-D at the low dc magnetic bias $H_{dc}$ = 46 Oe. Moreover, FeCuNbSiB has a large resonant dynamic strain coefficient at quite low Hdc due to a high mechanical quality factor, which is 3-5 times greater than that of Terfenol-D at the same low $H_{dc}$. Based on such magnetostriction characteristics, we fabricate a new type of transducer with FeCuNbSiB/PZT-8/FeCuNbSiB. Its maximum resonant magnetoelectric voltage coefficient achieves ~10 V/Oe. The ME output power reaches 331.8 ${\mu}W$ at an optimum load resistance of 7 $k{\Omega}$ under 0.4 Oe ac magnetic field, which is 50 times higher than that of the previous ultrasonic-horn-substrate composite transducer and it decreases the size by nearly 86%. The performance indicate that the FeCuNbSiB/PZT-8/FeCuNbSiB transducer is promising for application in highly efficient magnetoelectric energy conversion.
Keywords
nanocrystalline FeCuNbSiB alloy; magnetostrictive material; piezomagnetic coefficient; magnetic permeability; magnetoelectric effect;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).   DOI
2 G. Herzer, IEEE Trans. Magn. 25, 3327 (1989).   DOI   ScienceOn
3 J. Y. Zhai, S. X. Dong, Z. P. Xing, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 083507 (2006).   DOI   ScienceOn
4 L. X. Bian, Y. M. Wen, P. Li, Q. L. Gao, and X. X. Liu, J. Magnetics 14, 2 (2009).
5 B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Cambridge, MA (1972).
6 F. Yang, Y. M. Wen, P. Li, M. Zheng, and L. X. Bian, Sensor Actuat. A 141, 129 (2008).   DOI   ScienceOn
7 Y. J. Wang, S. W. Or, H. L. W Chan, X. Y. Zhao, and H. S. Luo, J. Appl. Phys. 103, 124511 (2008).   DOI   ScienceOn
8 P. Li, Y. M Wen, and L. X Bian, Appl. Phys. Lett. 90, 022503 (2007).   DOI   ScienceOn
9 G. Engdahl, Magnetostrictive Materials Handbook, Academic Press San Diego (2000).
10 A. Kolano-Burian, R. Kolano, M. Kowalczyk, J. Szynowski, M. Steczkowska-Kempka, and T. Kulik, J. Phys.: Conf. Ser. 144, 012062 (2009).   DOI   ScienceOn
11 A. G. Olabi and A. Grunwald, Mater. Design 29, 469 (2008).   DOI   ScienceOn
12 J. Lou, R. E. Insignares, Z. Cai, K. S. Ziemer, M. Liu, and N. X. Sun, Appl. Phys. Lett. 91, 182504 (2007).   DOI   ScienceOn
13 S. X. Dong, J. Y. Zhai, J. F. Li, and D. Viehland, J. Appl. Phys. 89, 122903 (2006).
14 S. Hong, J. G. Kim, and C. G. Kim, J. Magnetics 14, 71 (2009).   DOI   ScienceOn
15 T. G. Lee, J. B. Kim, and T. H. Noh, J. Magnetics 14, 155 (2009).   DOI   ScienceOn
16 S. Flohrer, R. Schäfer, and G. Herzer, J. Non-Cryst. Solids 354, 5097 (2008).   DOI   ScienceOn