• Title/Summary/Keyword: new constraints

Search Result 1,216, Processing Time 0.031 seconds

Design of a System Layout for Reconfigurable Manufacturing System with Theory of Constraints (제약이론을 활용한 재구성가능 생산시스템의 레이아웃 설계)

  • Kurniadi, Kezia Amanda;Ryu, Kwangyeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • This paper presents a systematic approach for design of timely and proper layouts of a manufacturing system facilitating reconfigurability, referred to as a reconfigurable manufacturing system. A proper methodology for design of a system layout is required for reconfiguration planning - adding or removing machines for supplying the exact capacity needed to fulfill market demands, as well as minimizing the cost of adding new machines. In this paper, theory of constraints is used to make reconfiguration manufacturing systems more cost-effective and efficiency. The proposed approach is validated by using a real industrial case. This paper suggests that the proposed study should be performed concurrently with the design of a new manufacturing system.

A New Constraint Handling Method for Economic Dispatch

  • Li, Xueping;Xiao, Canwei;Lu, Zhigang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1099-1109
    • /
    • 2018
  • For practical consideration, economic dispatch (ED) problems in power system have non-smooth cost functions with equality and inequality constraints that makes the problems complex constrained nonlinear optimization problems. This paper proposes a new constraint handling method for equality and inequality constraints which is employed to solve ED problems, where the incremental rate is employed to enhance the modification process. In order to prove the applicability of the proposed method, the study cases are tested based on the classical particle swarm optimization (PSO) and differential evolution (DE) algorithm. The proposed method is evaluated for ED problems using six different test systems: 6-, 15-, 20-, 38-, 110- and 140-generators system. Simulation results show that it can always find the satisfactory solutions while satisfying the constraints.

Performance Analysis of Coordinated Cognitive Radio Networks under Fixed-Rate Traffic with Hard Delay Constraints

  • Castellanos-Lopez, S. Lirio;Cruz-Perez, Felipe A.;Rivero-Angeles, Mario E.;Hernandez-Valdez, Genaro
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.130-139
    • /
    • 2014
  • Due to the unpredictable nature of channel availability, carrying delay-sensitive traffic in cognitive radio networks (CRNs) is very challenging. Spectrum leasing of radio resources has been proposed in the so called coordinated CRNs to improve the quality of service (QoS) experienced by secondary users (SUs). In this paper, the performance of coordinated CRNs under fixed-rate with hard-delay-constraints traffic is analyzed. For the adequate and fair performance comparison, call admission control strategies with fractional channel reservation to prioritize ongoing secondary calls over new ones are considered. Maximum Erlang capacity is obtained by optimizing the number of reserved channels. Numerical results reveal that system performance strongly depends on the value of the mean secondary service time relative to the mean primary service time. Additionally, numerical results show that, in CRNs without spectrum leasing, there exists a critical utilization factor of the primary resources from which it is not longer possible to guarantee the required QoS of SUs and, therefore, services with hard delay constraints cannot be even supported in CRNs. Thus, spectrum leasing can be essential for CRN operators to provide the QoS demanded by fixed-rate applications with hard delay constraints. Finally, the cost per capacity Erlang as function of both the utilization factor of the primary resources and the maximum allowed number of simultaneously rented channels is evaluated.

A Study on the Theme Park Users' Choice behavior -Application of Constraints-Induced Conjoint Choice Model- (주제공원 이용자들의 선택행동 연구 -Constraints-Induced Conjoint Choice Model의 적용-)

  • 홍성권;이용훈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.18-27
    • /
    • 2000
  • The importance of constraints has been one of major issues in recreation for prediction of choice behavior; however, traditional conjoint choice model did not consider the effects of these variables or fail to integrate them into choice model adequately. The purposes of this research are (a) to estimate the effects of constraints in theme park choice behavior by the constraints-induced conjoint choice model, and (b) to test additional explanatory power of the additional constraints in this suggested model against the more parsimonious traditional model. A leading polling agency was employed to select respondents. Both alternative generating and choice set generating fractional factorial design were conducted to meet the necessary and sufficient conditions for calibration of the constraints-induced conjoint choice model. Th alternative-specific model was calibrated. The log-likelihood ratio test revealed that suggested model was accepted in the favor of the traditional model, and the goodness-of-fit($\rho$$^2$) of suggested and traditional model was 0.48427 and 0.47950, respectively. There was no difference between traditional and suggested model in estimates of attribute levels of car and shuttle bus because alternatives were created to estimate the effects of constraints independently from mode related variables. Most parameters values of constraints had the expected sign and magnitude: the results reflected the characteristics of the theme parks, such as abundance of natural attractions and poor accessibility in Everland, location of major fun rides indoor in Lotte World, city park like characteristics of Dream Land, and traffic jams in Seoul. Instead of the multinomial logit model, the nested logit model is recommended for future researches because this model more reasonably reflects the real decision-making process in park choice. Development of new methodology too integrate this hierarchical decision-making into choice model is anticipated.

  • PDF

Scheduling of Sporadic and Periodic Tasks and Messages with End-to-End Constraints (양극단 제약을 갖는 비주기, 주기 태스크와 메시지 스케줄링)

  • Oh Hoon;Park Hong Seong;Kim Hyoung Yuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.175-185
    • /
    • 2005
  • The scheduling methods of the distributed real-time systems have been proposed. However, they have some weak points. They did not schedule both sporadic and periodic tasks and messages at the same time or did not consider the end-to-end constraints such as precedence relations between sporadic tasks. This means that system scheduling must guarantee the constraints of practical systems and be applicable to them. This paper proposes a new scheduling method that can be applied to more practical model of distributed real-time systems. System model consists of sporadic and periodic tasks with precedence relations and sporadic and periodic messages and has end-to-end constraints. The proposed method is based on a binary search-based period assignment algorithm, an end-to-end laxity-based priority assignment algorithm, and three kinds of schedulability analysis, node, network, and end-to-end schedulability analysis. In addition, this paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system, shows that existing scheduling methods such as Rate Monotonic scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints, and proposes an end-to-end laxity-based priority assignment algorithm.

Impact Angle Control Guidance Synthesis for Evasive Maneuver against Intercept Missile

  • Yogaswara, Y.H.;Hong, Seong-Min;Tahk, Min-Jea;Shin, Hyo-Sang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.719-728
    • /
    • 2017
  • This paper proposes a synthesis of new guidance law to generate an evasive maneuver against enemy's missile interception while considering its impact angle, acceleration, and field-of-view constraints. The first component of the synthesis is a new function of repulsive Artificial Potential Field to generate the evasive maneuver as a real-time dynamic obstacle avoidance. The terminal impact angle and terminal acceleration constraints compliance are based on Time-to-Go Polynomial Guidance as the second component. The last component is the Logarithmic Barrier Function to satisfy the field-of-view limitation constraint by compensating the excessive total acceleration command. These three components are synthesized into a new guidance law, which involves three design parameter gains. Parameter study and numerical simulations are delivered to demonstrate the performance of the proposed repulsive function and guidance law. Finally, the guidance law simulations effectively achieve the zero terminal miss distance, while satisfying an evasive maneuver against intercept missile, considering impact angle, acceleration, and field-of-view limitation constraints simultaneously.

A NEW PROJECTION ALGORITHM FOR SOLVING A SYSTEM OF NONLINEAR EQUATIONS WITH CONVEX CONSTRAINTS

  • Zheng, Lian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.823-832
    • /
    • 2013
  • We present a new algorithm for solving a system of nonlinear equations with convex constraints which combines proximal point and projection methodologies. Compared with the existing projection methods for solving the problem, we use a different system of linear equations to obtain the proximal point; and moreover, at the step of getting next iterate, our projection way and projection region are also different. Based on the Armijo-type line search procedure, a new hyperplane is introduced. Using the separate property of hyperplane, the new algorithm is proved to be globally convergent under much weaker assumptions than monotone or more generally pseudomonotone. We study the convergence rate of the iterative sequence under very mild error bound conditions.

An optimal and genetic route search algorithm for intelligent route guidance system (지능형 주행 안내 시스템을 위한 유전 알고리즘에 근거한 최적 경로 탐색 알고리즘)

  • Choe, Gyoo-Seok;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.156-161
    • /
    • 1997
  • In this thesis, based on Genetic Algorithm, a new route search algorithm is presented to search an optimal route between the origin and the destination in intelligent route guidance systems in order to minimize the route traveling time. The proposed algorithm is effectively employed to complex road networks which have diverse turn constrains, time-delay constraints due to cross signals, and stochastic traffic volume. The algorithm is also shown to significantly promote search efficiency by changing the population size of path individuals that exist in each generation through the concept of age and lifetime to each path individual. A virtual road-traffic network with various turn constraints and traffic volume is simulated, where the suggested algorithm promptly produces not only an optimal route to minimize the route cost but also the estimated travel time for any pair of the origin and the destination, while effectively avoiding turn constraints and traffic jam.

  • PDF

Monte Carlo Production Simulation Considering the Characteristics of Thermal Units (화력기 운전 특성을 고려한 Monte Carlo 발전시뮬레이션)

  • Cha, Jun-Min;Oh, Kwang-Hae;Song, Kil-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1114-1116
    • /
    • 1999
  • This paper presents a new algorithm which evaluates production cost and reliability indices under various constraints of the thermal generation system. In order to consider the operational constraints of thermal units effectively, the proposed algorithm is based on Monte Carlo techniques instead of analytical ones which have difficulty in modelling the units with additional constraints. At that point, generating units are modelled into two types, base load units and peaking units. These generating unit models are used in state duration sampling simulation for which approach can readily consider the peaking unit operating cycles and easily calculates frequency-duration indices. The proposed production simulation algorithm is applied to the IEEE Reliability Test System, and performs the production simulation under the given constraints. The results show that the proposed algorithm is accurate, reliable and useful.

  • PDF

An Iimage Association Technique Employing Constraints Among Pixels

  • Ishikawa, Seiji;Goda, Tomokazu;Kato, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.951-956
    • /
    • 1990
  • The present paper describes a new technique for associating images employing a set of local constraints among pixels on an image. The technique describes the association problem in terms of consistent labeling which is an abstraction of various kinds of network constraints problems. In this particular research, a pixel and its gray value correspond to a unit and a label, respectively. Since constraints among units on an image are defined with respect to each n-tuple of pixels, performance of the present association technique largely depends on how to choose the n-tuples on an image plane. The main part of this paper is devoted to discussing this selection scheme and giving a solution to it as well as showing the algorithm of association. Also given are some results of the simulation performed on synthetic binary images to examine the performance of proposed technique, followed by the argument on further studies.

  • PDF