• Title/Summary/Keyword: new bounds

Search Result 241, Processing Time 0.026 seconds

A REFINEMENT OF THE JENSEN-SIMIC-MERCER INEQUALITY WITH APPLICATIONS TO ENTROPY

  • Sayyari, Yamin
    • The Pure and Applied Mathematics
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2022
  • The Jensen, Simic and Mercer inequalities are very important inequalities in theory of inequalities and some results are devoted to this inequalities. In this paper, firstly, we establish extension of Jensen-Simic-Mercer inequality. After that, we investigate bounds for Shannons entropy of a probability distribution. Finally, We give some new applications in analysis.

A new adaptive mesh refinement strategy based on a probabilistic error estimation

  • Ziaei, H.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.547-557
    • /
    • 2020
  • In this paper, an automatic adaptive mesh refinement procedure is presented for two-dimensional problems on the basis of a new probabilistic error estimator. First-order perturbation theory is employed to determine the lower and upper bounds of the structural displacements and stresses considering uncertainties in geometric sizes, material properties and loading conditions. A new probabilistic error estimator is proposed to reduce the mesh dependency of the responses dispersion. The suggested error estimator neglects the refinement at the critical points with stress concentration. Therefore, the proposed strategy is combined with the classic adaptive mesh refinement to achieve an optimal mesh refined properly in regions with either high gradients or high dispersion of the responses. Several numerical examples are illustrated to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm and the results are compared with the classic adaptive mesh refinement strategy described in the literature.

NEW INTERIOR POINT METHODS FOR SOLVING $P_*(\kappa)$ LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, You-Young;Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.189-202
    • /
    • 2009
  • In this paper we propose new primal-dual interior point algorithms for $P_*(\kappa)$ linear complementarity problems based on a new class of kernel functions which contains the kernel function in [8] as a special case. We show that the iteration bounds are $O((1+2\kappa)n^{\frac{9}{14}}\;log\;\frac{n{\mu}^0}{\epsilon}$) for large-update and $O((1+2\kappa)\sqrt{n}log\frac{n{\mu}^0}{\epsilon}$) for small-update methods, respectively. This iteration complexity for large-update methods improves the iteration complexity with a factor $n^{\frac{5}{14}}$ when compared with the method based on the classical logarithmic kernel function. For small-update, the iteration complexity is the best known bound for such methods.

  • PDF

NEW QUANTUM VARIANTS OF SIMPSON-NEWTON TYPE INEQUALITIES VIA (α, m)-CONVEXITY

  • Saad Ihsan Butt;Qurat Ul Ain;Huseyin Budak
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In this article, we will utilize (α, m)-convexity to create a new form of Simpson-Newton inequalities in quantum calculus by using q𝝔1-integral and q𝝔1-derivative. Newly discovered inequalities can be transformed into quantum Newton and quantum Simpson for generalized convexity. Additionally, this article demonstrates how some recently created inequalities are simply the extensions of some previously existing inequalities. The main findings are generalizations of numerous results that already exist in the literature, and some fundamental inequalities, such as Hölder's and Power mean, have been used to acquire new bounds.

The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1496-1506
    • /
    • 2003
  • The SIMP (solid isotropic material with penalization) approach is perhaps the most popular density variable relaxation method in topology optimization. This method has been very successful in many applications, but the optimization solution convergence can be improved when new variables, not the direct density variables, are used as the design variables. In this work, we newly propose S-shape functions mapping the original density variables nonlinearly to new design variables. The main role of S-shape function is to push intermediate densities to either lower or upper bounds. In particular, this method works well with nonlinear mathematical programming methods. A method of feasible directions is chosen as a nonlinear mathematical programming method in order to show the effects of the S-shape scaling function on the solution convergence.

An Approximate Analysis of a Stochastic Fluid Flow Model Applied to an ATM Multiplexer (ATM 다중화 장치에 적용된 추계적 유체흐름 모형의 근사분석)

  • 윤영하;홍정식;홍정완;이창훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.97-109
    • /
    • 1998
  • In this paper, we propose a new approach to solve stochastic fluid flow models applied to the analysis of ceil loss of an ATM multiplexer. Existing stochastic fluid flow models have been analyzed by using linear differential equations. In case of large state space, however. analyzing stochastic fluid flow model without numerical errors is not easy. To avoid this numerical errors and to analyze stochastic fluid flow model with large state space. we develope a new computational algorithm. Instead of solving differential equations directly, this approach uses iterative and numerical method without calculating eigenvalues. eigenvectors and boundary coefficients. As a result, approximate solutions and upper and lower bounds are obtained. This approach can be applied to stochastic fluid flow model having general Markov chain structure as well as to the superposition of heterogeneous ON-OFF sources it can be extended to Markov process having non-exponential sojourn times.

  • PDF

A Study on the Optimal Routing Problem for a Transfer Crane (컨테이너 터미널에서의 트랜스퍼 크레인의 최적 운영 방안에 관한 연구)

  • Kim, Hu-Gan;Kim, Chul-Han
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.1
    • /
    • pp.35-49
    • /
    • 2008
  • To load a container in a yard block onto a ship, a Transfer Crane (TC) moves to a target yard bay, then its hoist picks up a selected container and loads it onto a waiting Yard Truck (YT). An optimal routing problem of Transfer Crane is a decision problem which determines a given TC's the visiting sequence of yard-bays and the number of containers to transfer from each yard-bay. The objective is to minimize the travel time of the TC between yard-bays and setup time for the TC in a visiting yard. In this paper, we shows that the problem is NP-complete, and suggests a new formulation for it. Using the new formulation for the problem, we investigate some characteristics of solutions, a lower and upper bounds for it. Moreover, our lower and upper bound is very efficient to applying some instances suggested in a previous work.

THE REPRESENTATION AND PERTURBATION OF THE W-WEIGHTED DRAZIN INVERSE

  • Xu, Zhaoliang;Wang, Guorong
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.113-126
    • /
    • 2007
  • Let A and E be $m{\times}n$ matrices and W an $n{\times}m$ matrix, and let $A_{d,w}$ denote the W-weighted Drazin inverse of A. In this paper, a new representation of the W-weighted Drazin inverse of A is given. Some new properties for the W-weighted Drazin inverse $A_{d,w}\;and\;B_{d,w}$ are investigated, where B=A+E. In addition, the Banach-type perturbation theorem for the W-weighted Drazin inverse of A and B are established, and the perturbation bounds for ${\parallel}B_{d,w}{\parallel}\;and\;{\parallel}B_{d,w}-A_{d,w}{\parallel}/{\parallel}A_{d,w}{\parallel}$ are also presented. When A and B are square matrices and W is identity matrix, some known results in the literature related to the Drazin inverse and the group inverse are directly reduced by the results in this paper as special cases.

Production Costing Model Including Hydroelectric Plants in Long-range Generation Expansion Planning (장기전원계획에 있어서 수력운전을 고려한 운전비용 계산모형)

  • 신형섭;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.2
    • /
    • pp.73-79
    • /
    • 1987
  • This paper describes a new algorithm to evaluate the production cost for a generation system including energy-limited hydroelectric plants. The algorithm is based upon the analytical production costing model developed under the assumption of Gaussian probabilistic distribution of random load fluctuations and plant outages. Hydro operation and pumped storage operation have been dealt with in the previous papers using the concept of peak-shaving operation. In this paper, the hydro problem is solved by using a new version of the gradient projection method that treats the upper / lower bounds of variables saparately and uses a specified initial active constraint set. Accuracy and validity of the algorithm are demonstrated by comparing the result with that of the peak-shaving model.

  • PDF

Indexing for current and future positions of moving objects using new conservative bounding rectangle (보존 경계 사각형을 이용한 이동객체의 현재와 미래 위치 색인)

  • Hoang Do Thanh Tung;Jung, Young-Jin;Lee, Eung-Jae;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.43-45
    • /
    • 2003
  • Nowadays, with numerous emerging applications (e.g., traffic control, meteorology monitoring, mobile computing, etc.), access methods to process current and future queries for moving objects are becoming increasingly important. Among these methods, the time-parameterized R-tree (TPR-tree) seems likely the most flexible method in one, two, or three-dimensional space. A key point of TPR-tree is that the (conservative) bounding rectangles are expressed by functions of time. In this paper, we propose a new method, which takes into account positions of its moving objects against the rectangle's bounds. In proposed method, the size of bounding rectangle is significantly smaller than the traditional bounding rectangle in many cases. By this approach, we believe that the TPR-tree can improve query performance considerably.

  • PDF