& A MLEE 0|8 OIS2HAS St
Olay x| aolt
s Egdr U2 E2S

ESUE D CIOIEHMOoIA Al
{tunghdt®, yijeong. eungjae, khryu}@dblab.chungbuk.ac.kr

Indexing for current and future positions of moving objects using

new conservative bounding rectangle

Hoang Do Thanh Tung®, Young-Jin Jung, Eung-Jae Lee, Keun—-Ho Ryu
Database laboratory, Chungbuk National University

Abstract

Nowadays, with numerous emerging applications (¢.g., traffic control, meteorology monitoring, mobile computing, etc.),
access methods to process current and future queries for moving objects are becoming increasingly important. Among these
methods, the time-parameterized R-tree (TPR-tree) seems likely the most flexible method in one, two, or three-dimensional
space. A key point of TPR-tree is that the (conservative) bounding rectangles are expressed by functions of time. In this paper,
we propose a new method, which takes into account positions of its moving objects against the rectangle’s bounds. In proposed
method, the size of bounding rectangle is significantly smaller than the traditional bounding rectangle in many cases. By this
approach, we believe that the TPR-tree can improve query performance considerably.

1. Introduction

Spatio-temporal database that manages huge of dynamic
objects are becoming increasingly important due to numerous
emerging applications (e.g., traffic control, meteorology
monitoring, mobile computing, etc.). The access methods for
such database can be classified in two major categories
depending on whether they deal with past information retrieval,
or current and future positions of moving objects. In this work,
we focus on second category.

Among many current access methods processing current and
future queries, the time-parameterized R-tree (TPR-tree)
proposed by Simonas Saltenis [1] seems likely the most flexible
method. The technique naturally extends the R*-tree. Instead of
using true, always minimum bounding rectangles, the TPR-tree
employs rectangles termed conservative bounding rectangles
(Figure 1). They are minimum at some time point, but most
likely not at later times. The lower bound of a conservative
bounding rectangle is set to move with the minimum speed of the
enclosed points, while the upper bound is set to move with the
maximum speed of the enclosed points. This ensures that
conservative bounding intervals are indeed bounding for all
times considered.

In this paper, we propose a new type of the conservative
bounding rectangle. In many cases, the new type is significantly
smaller than the traditional bounding rectangle. With new
approach, we can reduce much dead space as well as improves

* This work was supported by KOSEF RRC project (Cheongju
Univ. ICRC) in Korea

43

its query performance compared with TPR-tree.

Figure 1.Conservative bounding rectangles and formula

The rest of the paper is organized as follows. Section 2
reviews development of the TPR-tree. Section 3 analyzes
conservative bounding rectangle problems. Section 4 proposes
new type of conservative bounding rectangle. Section 5
concludes the paper with the future work.

2. Related work

In 2000, Saltenis et al. [1] proposed the TPR-tree, which
adapts the R*-tree construction algorithms to moving objects.
The main idea is to make the bounding rectangles functions of
time so that the enclosed moving objects will be in the same
rectangles. This approach seems more practical because it
overcomes drawbacks of previous approaches. Moreover, there

20033 % gr=A R st sHS etz i=Ea] Vol 30. No. 2

were two remarkably improvements, First, the R¥*-tree [2] is an
extension of the TPR-tree to handle moving objects with
expiration times. Secondly, Yufei Tao [3] proposed TPR*-tree,
which integrates novel insertion/deletion algorithms to enhance
performance of TPR-trece. TPR*-tree consider swept regions for
insertion/deletion algorithm instead of integral metric

3. Problems of Conservative bounding rectangle

Until now, the TPR-tree still use the maximum speeds for the
upper bounds as well as the minimum speeds for the lower
bounds of bounding rectangles in every direction. The follows is
an example and analysis to clarify problems.

3.1 Example of growing nodes

WaTr. 4o

W}

o

. B
T
=

5

u N ¢ 3 K o G

(a) MBRs & VBRs at time 0

(b) MBRs at tume |

Figure 2.Entries in a TPR-tree

Figure 2 shows an example of growing of two nodes N, N,
from time 0 to time 1. N, N, follow movements of enclosed
objects a, b, ¢, d (notice that each edge moves according to its
velocity). The MBR of a non-leaf entry always encloses those of
the objects in its subtree, but it is not necessarily tight. For
example, N, (N;) at timestamp 1 is much larger than the tightest
bounding rectangle for g, b (c, d). This example pointed out that
the conservative bounding rectangles not tight, which generate
much dead space overtime.

3.2 Analyzing Problem

Now, we turn into to analyze the reason of much dead space,
which the conservative bounding rectangles generate.

Without losing generality, we analyze examples in one axis.
There are two objects A and B, of which V, (velocity of A) is
the minimum and Vg (velocity of B) is the maximum. Thus, their
conservative bounding rectangle has the lower bound velocity V|,
equal to V, and the upper bound velocity V equal to Vg. We
assume that,

At t=0, Distance (lower bound, upper bound) = D= 10, and

At FO, Distance (A, B) = DAB =D[_u.

Now, we exam two cases following

Case 1: when A is before B. Figure 3 shows that the bounding
interval is always tight

3 H V) (R H V),
Vig--i | < Voo Lo U
A a0 o> B A »> o> B

@) Va=-1, Vg=2 (b) Va=1, Vp=2

Figure 3.A is before B (a) moving in the opposite direction (b) moving
in the same direction

Case 2: when A is after B. Figure 4, 5 show the bounding

interval is not always tight except current time.

AR fpVy Voo e
B pp e&»aA B i

(@) t=0, V=1, V3=2, D1y=Das (b) t=3, Dry=13, Dap=7

Y
AT
- &b

Figure 4.A is after B, they are moving in the same direction

v, € | Vi
t <«oa T

Be»

v ’Vu
B »r 46 A

(2) =0, V,=-1, Vp=2, D1y=Dap

,<

(b) =3, Dy=19, Dgp=1

Figure 5.A after B, they are moving toward each another

From the above observation, we found that case 1 are optimal
because the bounding interval is always minimum. It is easy to
realize that, case 2 is not optimal because the bounding intervals
are always not tight. Furthermore, when moving objects fall into
case 2, the conservative bounding rectangle will generate much
dead space and obviously degenerate query performance.

4. New approach for conservative bounding rectangle

To overcome the above problem, we thought a new type of

conservative bounding rectangle, where the speed of the upper
bound is reduced as much as possible and, analogously, the speed
of the lower bound is increased as much as possible.
From observation that the TPR-tree is optimized for timestamp
queries in interval [T, Tc+H], where T¢ is the current update
time, and H is a tree parameter. By taking into account positions
of its moving objects against the rectangle’s bounds, we created a
new bounding rectangle, which is nearly optimal, replaced the
current one.

4.1 In case of one dimension

In Figure 6, we examine for one axis, assume that position P,
of the upper bound is farther than position P, of O,, who moves
farthest after H time. V,is O, speed. The distant between O, and
the upper bound is d= P, —P,, d>0.

In H time, O, will move a distant S= V,*H, and the upper bound
will move a distant S’= V,*H. At time H, to the O, catches up
with the upper bound, S=S’ + d, so that V,*H = V,*H + d. Given
Vs, to O, always runs within that rectangle u need running at
speed =M, V. <V, within H,. It is similar for the
* H
lower bound has speed

Vv, = ﬁ_’f_fl__:_‘i|, d=P.-P,, L is position of
H

the lower bound.

'y

P2

Figure 6.Example in one axis

2003 = EZ2A W}tz b

st EEE4 Vol 30. No. 2

4.2 In case of multi dimension

In generality, with moving objects in d-dimensional space and
having more than two objects, we need to choose objects, which
will go farthest after H time for every dimension. Therefore, the
bounds will reach the positions of objects that move farthest for
each axis.

We replace the traditional formula

v™ = min {o.v,.lo € node }

i

max

v™ = max {o.vilo € node }

By the new formula to calculate new bound speeds as follows

; . jov,xH -l —oux;
v = mm{—‘—;{-—‘—’lo € node}

ov,xH ~u, —oux;
v = max{——‘—ﬁ—‘—‘|o € node}

U; is the upper bound’s position of i™ dimension, 1 is the lower
bound’s position of i dimension.

By applying the above formula, we have new conservative
bounding rectangle, which always has smaller speed in case 2 of
section 3.2, so they spend less dead space.

See Figure 7, O, is running slowest and O, is running fastest.
Notice that the new conservative bounding rectangle is minimum
at time T.rtH, it grows slower than load-time bounding
rectangle, which is running with speed of O, and O,. We really
reduce much unnecessary space.

g reclangle

- t
tet tupa T+ H

Figure 7.New conservative bounding rectangle

4.3 Example

An example is for comparison between two conservative
bounding rectangles. We assume that there are 4 moving cars
(km/minute): a(-1,1), b(2,-2), ¢(-1,0), d(1,2).

The traditional conservative (dashed) bounding rectangle, see
Figure 8,
v =max(a,,b,,c,,d,)=2

v =mix(a,,b,,c,.d.)=-1
v;® =max(a,,b, ,c, ,d,)=2
v;"‘“ =mix(a,,b,,c,,d,)=~2

The new conservative (bold) bounding rectangle, see Figure 8,
We assume that H= 4 and use the new formula to calculate

v = max(~1,1,0,1) =1

x

min

v = min{ —1,0,0,1) = -1
v;f"" = max(0.25,-1.25,0,1.25) =1.25
v;““’ = min(0,-1.25,0.75,0) = -1.25
.:I l‘; . o
s H him s o
¢ 4 T %
i i T o
) : 0 i s) TR . N
oariade tgatonn Prriate tsaenn H AL Thinl x
(a) =0) =1 (©) =3

Figure 8.Comparision between two kinds of rectangles

5. Conclusion

Motivated by improving efficiency for queries performance,
in this paper, we proposed new approach for new type of
conservative bounding rectangle, which is nearly optimal in
many case. Due to much smaller bounding rectangles, we believe
TPR-tree technique will gain overall good query performance.
Moreover, if considering object positions in the insertion
algorithm, we can find a better node for a new object inserted.

In the future work, we are going to develop an expansion
TPR-tree, which uses new type of conservative bounding
rectangle and improve insertion and deletion of the TPR-tree.

References
[1] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. "Indexing the Positions of Continuously Moving
Objects”. In Proceedings of SIGMOD, 2000.
S. Saltenis and C. S. Jensen. “Indexing of Moving
Objects for Location-Based Services”. In Proc. of the
Intl. Conf. On Data Engineering, ICDE, Feb. 2002.
Tao, Y., Papadias, D., Sun, J. “The TPR*-Tree: An
Optimized Spatio-Temporal Access Method for
Predictive Queries”. To appear in 29th Very Large Data
Bases Conference (VLDB), 2003.
H. D. Chon, D. Agrawal, and A. E. Abbadi. “Storage
and Retrieval of Moving Objects”. In Mobile Data
Management, pages 173-184, Jan. 2001.
C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled.
“STAR-Tree: An Efficient Self-Adjusting Index for
Moving Objects”. In Proc. of the Workshop on Alg. Eng.
and Experimentation, ALENEX, pages 178-193, Jan.
2002.

[2]

3]

(41

(5

45

