• Title/Summary/Keyword: new activation function

Search Result 157, Processing Time 0.027 seconds

The Effects of Integrated Provision Action Observation and Synchronized Electrical Sensory Stimulation for Sit-to-stand in Stroke Patients Function (일어서기 동작에 대한 동작관찰과 동기화된 전기적 감각자극의 통합적 제공이 뇌졸중 환자의 기능에 미치는 효과)

  • Moon, Young;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.27 no.3
    • /
    • pp.191-198
    • /
    • 2020
  • Background: Stroke patients experience multiple dysfunctions that include motor and sensory impairments. Therefore, new intervention methods require a gradational approach depending on functional levels of a stroke patient's activity and should include cognition treatment to allow for a patient's active participation in rehabilitation. Objects: This study investigates the effect of integrated revision of electrical sensory stimulation, which stimulates somatosensory and action observation training, which is synchronized cognition intervention method on stroke patients' functions. Methods: Twenty-one stroke patients were randomized into two groups. The two groups underwent twenty minutes of intervention five times a week for three weeks. This study used an electromyogram to evaluate symmetric muscle activation of lower extremities and muscle onset time when performing sit to stand before and after intervention. A weight-bearing ratio was used to evaluate the weight-bearing of the affected side in a sit to standing. To evaluate sit to stand performance ability, this study performed five timed sit to stand tests. Results: The two groups both showed statistically significant improvement in muscle onset time of lower extremity, static balance ability in a standing position, and sit to stand performance after the intervention (p < 0.05). In addition, the action observation and synchronized electrical sensory stimulation group showed significant improvement in symmetric muscle activation of lower extremities and weight-bearing ratio of the affected side (p < 0.05). Conclusion: action observation and synchronized electrical sensory stimulation (AOT with ESS) can have positive effects on a stroke patient's sit to stand performance, and the intervention method that provides integrated AOT with ESS can be used as new nervous system intervention program.

b0 Dependent Neuronal Activation in the Diffusion-Based Functional MRI

  • Kim, Hyug-Gi;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • Purpose: To develop a new diffusion-based functional MRI (fMRI) sequence to generate apparent diffusion coefficient (ADC) maps in single excitation and evaluate the contribution of b0 signal on neuronal changes. Materials and Methods: A diffusion-based fMRI sequence was designed with single measurement that can acquire images of three directions at a time, obtaining $b=0s/mm^2$ during the first baseline condition (b0_b), followed by 107 diffusion-weighted imaging (DWI) with $b=600s/mm^2$ during the baseline and visual stimulation conditions, and another $b=0s/mm^2$ during the last activation condition (b0_a). ADC was mapped in three different ways: 1) using b0_b (ADC_b) for all time points, 2) using b0_a (ADC_a) for all time points, and 3) using b0_b and b0_a (ADC_ba) for baseline and stimulation scans, respectively. The fMRI studies were conducted on the brains of 16 young healthy volunteers using visual stimulations in a 3T MRI system. In addition, the blood oxygen level dependent (BOLD) fMRI was also acquired to compare it with diffusion-based fMRI. A sample t-test was used to investigate the voxel-wise average between the subjects. Results: The BOLD data consisted of only activated voxels. However, ADC_ba data was observed in both deactivated and activated voxels. There were no statistically significant activated or deactivated voxels for DWI, ADC_b, and ADC_a. Conclusions: With the new sequence, neuronal activations can be mapped with visual stimulation as compared to the baseline condition in several areas in the brain. We showed that ADC should be mapped using both DWI and b0 images acquired with the same conditions.

New Yeast Cell-Based Assay System for Screening Histone Deacetylase 1 Complex Disruptor

  • Jeon, Kwon-Ho;Kim, Min-Jung;Kim, Seung-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.286-291
    • /
    • 2002
  • Histone deacetylase I (HDAC1) works as one of the components in a nucleosome remodeling (NuRD) complex that consists of several proteins, including metastasis-associated protein 1 (MTA1). Since the protein-protein interaction of HDAC1 and MTA1 would appear to be important for both the integrity and functionality of the HDAC1 complex, the interruption of the HDAC1 and MTA1 interaction may be an efficient way to regulate the biological function of the HDAC1 complex. Based on this idea, a yeast two-hybrid system was constructed with HDAC1 and MTA1 expressing vectors in the DNA binding and activation domains, respectively. To verify the efficiency of the assay system, 3,500 microbial metabolite libraries were tested using the paper disc method, and KB0699 was found to inhibit the HDAC1 and MTA1 interaction without any toxicity to the wild-type yeast. Furthermore, KB0699 blocked the interaction of HDAC1 and MTA1 in an in vitro GST pull down assay and induced morphological changes in B16/BL6 melanoma cells, indicating the interruption of the HDAC1 complex function. Accordingly, these results demonstrated that the yeast assay strain developed in this study could be a valuable tool for the isolation of a HDAC1 complex disruptor.

Cases Studies and Activation Method of Exhibition Working-Activity Satellite (지역 체험형박물관의 사례조사 및 활성화방안 연구)

  • Jung, Jinju;Choi, Hyoseung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.2
    • /
    • pp.21-30
    • /
    • 2005
  • It is not entirely new tendency now that museum have to become 'participation and working activity style' in 21st century. A lot of museums are changed fast to that visitors participate and work actively in museum program recently in Korea. Cheongju city is building various museums which have interesting themes contributed precious inheritances and collections belong to citizens. And Cheongju city is pushing ahead long-term target which is Ecomuseum City Cheongju with citizen is progressing for cultural city continuously. Also to become public museums and facilities which visitors want to come again, Cheongju city is trying to secure various experience space and facilities to keep in step in trend that visitors take part in and work actively in museum program. In an area, there are various cultural, historical, natural and industrial heritages that express relation of human and environment. In meaning that do function of antenna of sending culture which understanding, studying, informing these regional inheritances and promoting activity, in Ecomuseum, those are called "satellite" included not only regional preserved inheritances but also various theme museums which have mutual cooperative function. Satellite(or antenna) is very important element composing Ecomuseum. So I want to provide that is "Exhibition Working-Activity Satellite" that are places having experience space or facilities which visitors can work actively there like that. Such study for Ecomuseum and Exhibition Working-Activity Satellite can be promoted Ecomuseum City which is city for learning lifetime with citizens.

  • PDF

Real-time prediction of dynamic irregularity and acceleration of HSR bridges using modified LSGAN and in-service train

  • Huile Li;Tianyu Wang;Huan Yan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.501-516
    • /
    • 2023
  • Dynamic irregularity and acceleration of bridges subjected to high-speed trains provide crucial information for comprehensive evaluation of the health state of under-track structures. This paper proposes a novel approach for real-time estimation of vertical track dynamic irregularity and bridge acceleration using deep generative adversarial network (GAN) and vibration data from in-service train. The vehicle-body and bogie acceleration responses are correlated with the two target variables by modeling train-bridge interaction (TBI) through least squares generative adversarial network (LSGAN). To realize supervised learning required in the present task, the conventional LSGAN is modified by implementing new loss function and linear activation function. The proposed approach can offer pointwise and accurate estimates of track dynamic irregularity and bridge acceleration, allowing frequent inspection of high-speed railway (HSR) bridges in an economical way. Thanks to its applicability in scenarios of high noise level and critical resonance condition, the proposed approach has a promising prospect in engineering applications.

Improved Cycle GAN Performance By Considering Semantic Loss (의미적 손실 함수를 통한 Cycle GAN 성능 개선)

  • Tae-Young Jeong;Hyun-Sik Lee;Ye-Rim Eom;Kyung-Su Park;Yu-Rim Shin;Jae-Hyun Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.908-909
    • /
    • 2023
  • Recently, several generative models have emerged and are being used in various industries. Among them, Cycle GAN is still used in various fields such as style transfer, medical care and autonomous driving. In this paper, we propose two methods to improve the performance of these Cycle GAN model. The ReLU activation function previously used in the generator was changed to Leaky ReLU. And a new loss function is proposed that considers the semantic level rather than focusing only on the pixel level through the VGG feature extractor. The proposed model showed quality improvement on the test set in the art domain, and it can be expected to be applied to other domains in the future to improve performance.

A Study on Perception of Light and Space Experience in Contemporary Space Design (현대공간디자인에서 빛의 지각방식과 공간경험효과에 관한 연구)

  • Hong, Yu-Ran;Kwon, Young-Gull
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.339-346
    • /
    • 2007
  • This thesis has purpose of explaining that light is not only appreciated but also physically percepted in contemporary space design and examining effects of space experience through the physical perception. In keeping with such developments, light has been perceived as the object of another architectural tool in modern space design and has provided men with new experience by providing space image and function different from previous ones. With the expansion of the area of light, light has changed a space that is not a simple architectural factor into the essential concept that gives the architectural space image ! by combining it with architectural space, structure, form and materials throughout the whole process from the beginning to the completion. Through phenomenological approach, light is percepted and experienced by body movement, intervention of senses and memories, and passing of time. The percepted and experienced light brings increase of mutual understanding in space, activation and continuance of user's sensation, recreational experience by event occurrence and space experience effect thorough information from media.

Expression and Function of CTNNB1 in the Development of Avian Reproductive System

  • Bae, Seung-Min;Song, Gwonhwa
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Beta-catenin (CTNNB1, catenin (cadherin-associated protein), beta 1) is involved in various biological processes, including embryogenesis, tumorigenesis, angiogenesis and progression of metastasis. CTNNB1, as a multifunctional and oncogenic protein, has important roles in adhesion between Sertoli cells through an N-cadherin-dependent manner and in various cancer types through its over-activation. In addition, CTNNB1 can interact with estrogen/estrogen receptor alpha complex, which regulates the transcription of WNT (wingless-type MMTV integration site family)/CTNNB1 target genes. Recently, we investigated the functional roles and expression pattern of CTNNB1 during the morphological changes of embryonic gonads of chickens and the estrogen-dependent regulation of CTNNB1 in oviduct development and potential functions as a biomarker of CTNNB1 in human epithelial ovarian cancer using the chicken as a biological research model. Therefore, in this review, we provide a new insight of potential role of CTNNB1 in the development of the female reproductive tract during early embryogenesis and ovarian carcinogenesis of laying hen models.

Crystal structure of mismatch repair protein MutS and its complex with a substrate DNA

  • Ban, Changill
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.16-16
    • /
    • 2003
  • Mismatches in a DNA duplex are mainly due to DNA duplication errors that are generated by improper function of DNA polymerase. MutS, MutL and MutH are crucial proteins for the initiation of the methyl-directed mismatch repairing in bacteria. MutS has an ATPase activity md recognize the mismatched or unpaired bases on DNA. After binding to a mismatch, MutS recruits MutL to mediate the activation of MutH an endonuclease, which cleaves the 5' site of d(GATC) on the un-methylated strand. Both MutL and MutS also have essential roles in the subsequent removal and re-synthesis of the daughter strand. We have determined the crystal structures of either intact or active fragments of each of these proteins, both alone and complexed with ligands (DNA, ADP and ATP). The biochemical and mutagenesis studies based on the detailed 3-D structures led to new insights into the role of the ATPase activity of MutS in the mismatch recognition and directions for future investigation of mismatch repair.

  • PDF

Diagnosis of Plasma Equipment using Neural Network and Impedance Match Monitoring

  • Byungwhan Kim
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.120-124
    • /
    • 2002
  • A new methodology is presented to diagnose faults in equipment plasma. This is accomplished by using neural networks as a pattern recognizer of radio frequency (rf) impedance match data. Using a match monitor system, the match data were collected. The monitor system consisted mainly of a multifunction board and a signal flow diagram coded by Visual Designer. Plasma anomaly was effectively represented by electrical match positions. Twenty sets of fault-symptom patterns were experimentally simulated with variations in process factors, which include rf source power, pressure, Ar, and $O_$2 flow rates. As an input to neural networks, two means and standard deviations of positions were used as well as a reflected power. Diagnostic accuracy was measured as a function of training factors, which include the number of hidden neurons, the magnitude of initial weights, and two gradients of neuron activation functions. The accuracy was the most sensitive to the number of hidden neurons. Interaction effects on the accuracy were also examined by performing a 2$^$4 full factorial experiment. The experiments were performed on multipole inductively coupled plasma equipment.

  • PDF