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Diagnosis of Plasma Equipment using Neural Network and
Impedance Match Monitoring

Byungwhan Kim

Abstract - A new methodology is presented to diagnose faults in equipment plasma. This is accomplished by using neural net-
works as a pattern recognizer of radio frequency (rf) impedance match data. Using a match monitor system, the match data were
collected. The monitor system consisted mainly of a multifunction board and a signal flow diagram coded by Visual Designer.
Plasma anomaly was effectively represented by electrical match positions. Twenty sets of fault-symptom patterns were experimen-
tally simulated with variations in process factors, which include rf source power, pressure, Ar, and O, flow rates. As an input to
neural networks, two means and standard deviations of positions were used as well as a reflected power. Diagnostic accuracy was
measured as a function of training factors, which include the number of hidden neurons, the magnitude of initial weights, and two
gradients of neuron activation functions. The accuracy was the most sensitive to the number of hidden neurons. Interaction effects
on the accuracy were also examined by performing a 2* full factorial experiment. The experiments were performed on multipole

inductively coupled plasma equipment.

1. Introduction

Processing plasmas play a crucial role in both depositing
thin films and etching fine patterns. Any variability in
process factors (such as radio frequency (rf) power or pres-
sure) can cause a significant shift in plasma state. When
this shift becomes large enough to change the operating
conditions of the equipment beyond an acceptable level,
overall product quality can be greatly jeopardized. Thus,
timely and accurate diagnosis of plasma malfunction is
crucial to manufacturing integrated circuits.

Algorithmic systems such as HIPPOCRATES [1] have
been developed to identify process faults from statistical
inference procedures and electrical measurements per-
formed on IC wafers. Expert systems such as PIES [2]
have also been designed to draw upon experiential knowl-
edge to develop qualitative models of process behaviors.
By combining the advantages of each paradigm, a hybrid
diagnostic system was developed [3]. During on-line diag-
nosis in this system, plasma faults were diagnosed by util-
izing external sensors that monitor process inputs such as
power, pressure, and gas flows. Monitoring internal plasma
variables, rather than power, pressure, and gas flows, is
increasingly demanded due to their increased sensitivity
and numerous diagnostic clues that can be extracted. Nu-
merous in-situ sensors have been utilized for plasma diag-
nostics and control, which include a Langmuir probe, opti-
cal emission spectroscopy (OES), and rf sensor. An OES-
based plasma monitor system [4] has been presented but
lacks the ability to pinpoint root causes for abnormal
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plasma. Neural networks were used to detect and recognize
optical emission spectra of various gas species [5] as well
as to classify gas-phase infrared spectra [6]. These net-
works seemed promising for estimating chemical composi-
tions of sediments analyzed with reflectance spectroscopy
[7), calibrating near-infrared spectra of ampicillin tri-
hydrate samples [8], recognizing mass spectra [9], and in-
terpreting raman spectra of nitro-containing explosive ma-
terials [10]. In the context of diagnosis, however, neural
networks have rarely been applied to in-situ plasma diag-
nostic data.

A new methodology is presented to diagnose a process
plasma. Rather than in-situ spectroscopy-measured spectra,
neural networks are used to recognize a process of plasma
impedance matching. Match fault data were collected using
the system designed to monitor rf match network [11]. The
system consisted mainly of a multifunction board and a
signal flow diagram coded with Visual Designer [12]. A
total of 20 sets of faults and symptoms were obtained with
variations in process factors. For this data, a backpropaga-
tion neural network (BPNN) [13] was applied to capture
causal relationships between the causes and symptoms.
Diagnostic accuracy, i.e., recognition rate, is quantified
with the root-mean squared error metric. The accuracy is
then examined as a function of training factors. Relative
significances of training factors are investigated by means
of an interaction model.

2. Impedance match data

The parameters involved in rf matching were collected
using the monitor system previously reported [11]. Faults
in the plasma were simulated by incrementally changing
factor levels. The factors that were varied include source
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power, pressure, Ar, and O, flow rates. Their experimental
ranges and corresponding levels of increments are con-
tained in Table 1. A total of twenty faults, five for each fac-
tor, thus simulated. A total of six variables involved in im-
pedance matching were measured simultaneously, includ-
ing two match positions, related match errors, forward
power, and reflected power. Among them, the first two po-
sitions were selected as representative of faults in the
plasma. Positions in each experiment were initially set to
the same 5.94 and 6.80 volts, for impedance and phase mo-
tors, respectively. From the collected data, forty data ele-
ments were sampled and subsequently quantified with sta-
tistics, statistical mean, and standard deviation. Four statis-
tical variables, two for each position, could thus be pre-
pared. Due to little variations in the reflected power, its raw
data was used. These five variables constitute a symptom
and are presented to an input layer of the network. Mean-
while, the output pattern of a fault consists of four elements,
each corresponding to a process factor. Depending on the
degree of variation in the factor level, the fault severity of

each element was varied from (0.2 to 1.0 with an increment
of 0.2.

Table 1 Experimental factors and ranges involved in simu-
lating fault data

Process Factors Range Increments Units
Source Power 500 - 900 100 Watts
Pressure 7.5-17.5 2.5 mTorr

0O, Flow Rate 50-90 10 sccm
Ar Flow Rate 50-130 20 sccm

3. Backpropagation neural network

The BPNN is the most widely used in plasma data mod-
eling. A schematic of a BPNN is exhibited in Fig. 1. Rather
than a conventional bipolar (B) sigmoid function, a linear
(L) function was used in this study in the output layer since
this network has proven effective in improving prediction
accuracy [14]. Related gradients are represented by Gy and
Gi. A basic weight update scheme, commonly known as
the generalized delta rule, is expressed as:

W, im+D) =W, (m)+n AW, ; ,(m) (D

where W, ;, is the connection strength between the jth
neuron in the layer (k — 1 ) and the ith neuron in the layer
k. Other m and 77 indicate the iteration number and an
adjustable parameter called the “learning rate,” respectively.
The AW, ;, in (1) is defined as:
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By adjusting weighted connections recursively using the

rule of Eq. (1) for all the units in the network, the network
attempts to learn the relationships between fault symptoms
and roots.

Fault Severity

Output
Layer

Hidden
Layer(s)

Input
Layer

A f p

Fault Symptom

Fig. 1 A schematic of backpropagation neural network
with a linear neuron in the output layer.

4. Diagnosis
4.1 Model Evaluation

Many training factors are typically involved in training a
BPNN [15-16], including initial weight distribution, num-
ber of hidden units, and gradients of activation functions.
Each factor was experimentally varied to examine its effect
of diagnostic accuracy. Experimental factor ranges and
their respective increments are contained in Table 2.

Table 2 Experimental training factors, ranges, and increments

Training Factors
Initial weight distribution

Ranges Increments
+04- £1.8 {02

Number of hidden units 2-7 1
Gg 0.6-2.0 0.2
G 04-1.2 0.1

Diagnostic accuracy, i.e., recognition rate, was measured
with the root mean-squared error (o ), which is expressed
as

ii()’u - )A),‘j)z
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where y, and 5’11 indicate the actual and predicted fault
severities for the jth output neuron and j th test pattern.
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The p indicates the number of output neurons, here 4.
Another g represents the number of fault patterns to be
recognized by neural networks, here 20. As a termination
criterion for network training, the number of epochs was
set to 50000. Here the epoch equals the total number of the
input patterns presented to the input layer through the
whole process of network training. Results are shown in
Figs. 2-5. Fig. 2 shows the accuracy as a function of the
magnitude of initial weight distribution. As depicted in Fig.
2, the accuracy drastically increases as the magnitude of
the initial weight matrix increases from +0.4 to £0.6. In
contrast, the accuracy significantly decreases as the magni-
tude increases from *0.6 to +0.8. The accuracy no
longer decreases with further increasing the magnitude.
The lowest accuracy is obtained as 0.349 at a fairly smaller
magnitude of £0.4. As exhibited in Fig. 3, diagnostic ac-
curacy decreases consistently as the number of hidden neu-
rons increases. The lowest accuracy is thus obtained as
0.200 at a larger number of 7. In Fig. 4, the accuracy is
plotted as a function of the gradient of the bipolar sigmoid
function. From Fig. 4, no consistency between the accuracy
and the gradient is observed. The lowest accuracy, 0.307, is
obtained at 1.4. For the gradients exceeding 1.4, the accu-
racy seems to increase with an increase in the gradient.
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Fig. 2 Diagnostic accuracy as a function of the magnitude
of the initial weight distribution.
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Fig. 3 Diagnostic accuracy as a function of the number of
hidden neurons.
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Fig. 4 Diagnostic accuracy as a function of the gradient of
bipolar sigmoid function.
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Fig. 5 Diagnostic accuracy as a function of the gradient of
the linear function.

Fig. 5 displays the accuracy as a function of the linear
function. The accuracy drastically decreases as the gradient
increases from 0.4 to 0.5. At 0.6, the lowest accuracy,
0.297, is obtained. For the gradients that exceed 0.8, the
accuracy increases with an increase in the gradient. These
observations reveal that the lowest accuracy can be
achieved by varying the number of hidden neurons. This
implies that hidden neuron variable is the most critical fac-
tor in enhancing diagnostic accuracy.

4.2 Interaction Model

Additionally, the effect of interaction between the train-
ing factors on diagnostic accuracy are investigated. For this,
a 2% full factorial experiment [17] was conducted on the
four training factors. Factor ranges employed in the design
were carefully selected from Figs. 2-5 and are contained in
Table 3. For each of the experimental trials, diagnostic ac-
curacy was measured with Eq. (3). The BPNN was then
trained on this data and from the trained model several
plots were prepared to examine trade-offs between training
factors. Fig. 6 shows diagnostic accuracy as a function of
the magnitude of the initial weight distribution and the
number of hidden neurons. With an increase in the number
of hidden neurons, the accuracy is improved. The im-
provement is more appreciable at larger magnitudes of the
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initial weight distribution. Meanwhile, the accuracy seems
slightly improved with a decrease in the initial weight
magnitade at 5, but this is vnclear at 7. A sharper variation
in neural response suifaces with the initial weight distribu-
tion clearly indicates that the initial weight distribution
plays more dominant role than the number of hidden neu-
rons in determining the accuracy. Fig. 7 depicts the accu-
racy as a function of G, and Gg. As G increases, the accu-
racy decreases, and this behavior is observed over an entire
range of Gg. Meanwhile, the accuracy seems to decrease
with a decrease in Gg. The lowest accuracy is thus
achieved at higher G and lower Gg.
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Fig. 6 Diagnostic accuracy as a function of the magnitude
of the initial weight distribution and the number of
hidden neurons.
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Fig. 7 Diagnostic accuracy as a function of the gradients of
the bipolar sigmoid function and the linear function.

Table 3 Experimental ranges of training factors

Training Factors Ranges
Number of Hidden Neurons 5-7
Magnitude of Initial Weights t12- *16
GL 0.5-0.7

Gg 13-1.5

5. Conclusion

A new strategy for plasma diagnosis was presented and
used a neural network to recognize faults in the plasma. A
total of twenty fault-symptoms were simulated and the
symptoms were effectively represented by two static match
positions. Plasma faults were simulated with a variation in
source power, pressure, Ar, and O, flow rates. Diagnostic
accuracy was examined as a function of training factors,
which include the number of hidden neurons, the magni-
tude of the initial weight distribution, and the gradient of
neuron activation functions. The accuracy was most sensi-
tive to variations in the number of hidden neurons. Factor
interaction effects on the accuracy were investigated via a
statistically designed experiment. The method proposed
can further be applied to other in-situ diagnostic data.
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