• 제목/요약/키워드: new activation function

검색결과 157건 처리시간 0.028초

상호작용성(Interaction) 디지털포스터 제작에 관한 연구 (A study on production of Interaction Digital Poster)

  • 윤황록;경병표;유석호;이동열
    • 게임&엔터테인먼트 논문지
    • /
    • 제2권3호
    • /
    • pp.24-29
    • /
    • 2006
  • 최근 상호작용성(Interaction)은 멀티미디어에서 뿐만 아니라 일상생활의 화두로서 다양한 각도에서 논의되고 있고, 멀티미디어 기술에 기한 상호작용의 허용정도와 시청각적 기능이 더욱 활발해지고 있는 지금, 우리는 포스터에 대한 재인식이 필요할 시점이라 생각된다. 지금까지의 포스터는 일방적 정보전달 매체로서 수용자의 정보욕구 충족과 설치공간의 부적합성으로 메시지 전달의 한계에 부딪치고 있는 실증이다. 이는 새로운 대중 커뮤니케이션 대안으로서의 디지털 포스터에 대한 연구의 필요성과 디지털 포스터 디자인 영역의 활성화를 대변해 주는 근거 요소가 된다. 따라서 본 연구자는 이러한 디지털 포스터를 활용한 커뮤니케이션 효과의 극대화를 위한 디자인 과정과 사례제시를 하고, 본 연구에서 디지털 포스터의 사례제시를 통해서 그 발전 가능성을 가늠해보고 다양한 활용방법을 모색해 봄으로서 디지털 포스터 영역의 활성화를 기대한다.

  • PDF

세균성 리파제의 분자구조와 작용기작 (Molecular Structures and Catalytic Mechanism of Bacterial Lipases.)

  • 김형권
    • 한국미생물·생명공학회지
    • /
    • 제31권4호
    • /
    • pp.311-321
    • /
    • 2003
  • 세균은 지방을 분해할 수 있는 다양한 리파제를 생산한다. 리파제는 반응조건에 따라서 지방의 합성도 수행할 수 있는데 , 이러한 효소반응과정에서 고도의 기질특이성과 위치특이성 및 입체특이성을 보이기 때문에 제약산업과 정밀화학산업에서 효소촉매로서 널리 사용되고 있다. 지금가지 200종류 이상의 리파제효소가 보고되었으며, 이것들은 효소생산기원과 아미노산 상동성을 기준으로 6개의 family로 분류된다. 지난 10년 간 세균 리파제 6종에 대한 3D구조가 밝혀졌다. 이것들은 모두 중심부분에$\alpha/\beta$폴딩구조와 세린, 히스티딘, 아스팔틴산으로 구성된 활성부위를 공통적으로 갖고 있다. 활성부위를 양친성 $\alpha$나선구조가 뚜껑처럼 덮고 있으며, 물과 오일의 경계면을 만나면, 이 뚜껑이 열리고 효소활성이 크게 증가하는 '계면활성화' 현상을 보인다. P. cepacia 리파제 구조에는 기질과 결합하는 4개의 포켓이 있는데 이중 하나는 옥시음이온 구멍이고, 다른 세 개는 기질의 sn-1, sn-2, sn-3 지방산과 결합하는 부위이다. 이 포켓의 크기와 방향 및 소수성정도에 의해서 효소의 기질특이성과 입체특이성이 결정된다. 현재 이러한 구조연구를 기반으로 사용목적에 따른 맞춤 효소를 생산하기 위한 효소 개량연구가 활발히 진행되고 있다.

Discovery and Functional Study of a Novel Genomic Locus Homologous to Bα-Mating-Type Sublocus of Lentinula edodes

  • Lee, Yun Jin;Kim, Eunbi;Eom, Hyerang;Yang, Seong-Hyeok;Choi, Yeon Jae;Ro, Hyeon-Su
    • Mycobiology
    • /
    • 제49권6호
    • /
    • pp.582-588
    • /
    • 2021
  • The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of Bα and Bβ subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the Bα sublocus, but unlike the multiallelic Bα sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.

Activation of Lysosomal Function Ameliorates Amyloid-β-Induced Tight Junction Disruption in the Retinal Pigment Epithelium

  • Dong Hyun Jo;Su Hyun Lee;Minsol Jeon;Chang Sik Cho;Da-Eun Kim;Hyunkyung Kim;Jeong Hun Kim
    • Molecules and Cells
    • /
    • 제46권11호
    • /
    • pp.675-687
    • /
    • 2023
  • Accumulation of pathogenic amyloid-β disrupts the tight junction of retinal pigment epithelium (RPE), one of its senescence-like structural alterations. In the clearance of amyloid-β, the autophagy-lysosome pathway plays the crucial role. In this context, mammalian target of rapamycin (mTOR) inhibits the process of autophagy and lysosomal degradation, acting as a potential therapeutic target for age-associated disorders. However, efficacy of targeting mTOR to treat age-related macular degeneration remains largely elusive. Here, we validated the therapeutic efficacy of the mTOR inhibitors, Torin and PP242, in clearing amyloid-β by inducing the autophagy-lysosome pathway in a mouse model with pathogenic amyloid-β with tight junction disruption of RPE, which is evident in dry age-related macular degeneration. High concentration of amyloid-β oligomers induced autophagy-lysosome pathway impairment accompanied by the accumulation of p62 and decreased lysosomal activity in RPE cells. However, Torin and PP242 treatment restored the lysosomal activity via activation of LAMP2 and facilitated the clearance of amyloid-β in vitro and in vivo. Furthermore, clearance of amyloid-β by Torin and PP242 ameliorated the tight junction disruption of RPE in vivo. Overall, our findings suggest mTOR inhibition as a new therapeutic strategy for the restoration of tight junctions in age-related macular degeneration.

도시복개하천의 복원사업 이후 인접 주거지의 물리적 특성 변화 (The Changes of Adjacent Residential Area after the Restoration of Covered Urban Streams)

  • 김준영;양우현
    • 한국주거학회논문집
    • /
    • 제25권6호
    • /
    • pp.133-146
    • /
    • 2014
  • This study aims to analyze the changes of adjacent residential area after the restoration of covered urban streams in seoul. The changes of adjacent residential area after restoration were analyzed by changes of land using, urban structure, individual lot of land and architecture to investigate relationship of the urban stream and residential change. The result as follows: the first one is the change of land use and urban structure in adjacent residential area. This change of infrastructure through stream restoration has transformed land use and urban structure in adjacent residential area. Secondly, there is the changes of the individual lot of land. It seemed that new development by combined lots would be concentrated in stream-side blocks. But, the changes of lots such as combining or dividing lots tend to be concentrated in stream-side, main road and main streets. In stream-side, commercial function of land use has changed to residential one which has restored streams landscape by transformation of lots use without changes of ownership-lots. Finally, there is the change of architecture. It turned out new building in adjacent residential area is similar to general development. However, new building in streamside is related to direction of stream. In addition, remodeling and expansion tend to change in commercial buildings on stream-side bridges of corner lots intensively. As a result, it is related to expectation of architectural activation and improvement of sidewalk environment by stream restoration.

Prevention of UV-induced Skin Damage by Activation of Tumor Suppressor Genes p53 and $p14^{ARF}$

  • Petersen, R.;John, S.;Lueder, M.;Borchert, S.
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.338-351
    • /
    • 2003
  • UV radiation is the most dangerous stress factor among permanent environmental impacts on human skin. Consequences of UV exposure are aberrant tissue architecture, alterations in skin cells including functional changes. Nowadays new kinds of outdoor leisure-time activities and changing environmental conditions make the question of sun protection more important than ever. It is necessary to recognize that self-confident consumers do not consider to change their way of life, they demand modern solutions on the basis of new scientific developments. In the past one fundamental principle of cosmetics was the use of physical and organic filter systems against damaging UV-rays. Today new research results demonstrate that natural protecting cell mechanisms can be activated. Suitable biological actives strongly support the protection function not from the surface but from the inside of the cell. A soy seed preparation (SSP) was proven to stimulate natural skin protective functions. The major functions are an increased energy level and the prevention of DNA damage. These functions can I be defined as biological UV protection. The tumor suppressor protein p53 plays a key role in the regulation of DNA repair. p53 must be transferred into the phosphorylated form to work as transcription factor for genes which are regulating the cell cycle or organizing DNA repair. A pretreatment with SSP increases the phosphorylation rate of p53 of chronically UV-irradiated human keratinocytes significantly. According to the same test procedure SSP induces a dramatic increase in the expression of the tumor suppressor protein p14$^{ARF}$ that is supporting the p53 activity by blocking the antagonist of p53, the oncoprotein Mdm2. Mdm2, a ubiquitin E3-ligase, downregulates p53 and at the same time it prevents phosphorylation of p53. The positive influence of the tumor suppressor proteins explains the stimulation of DNA repair and prevention of sunburn cell formation by SSP, which was proven in cell culture experiments. In vivo the increased skin tolerance against UV irradiation by SSP could be confirmed too. We have assumed, that an increased repair potential provides full cell functionality.y.

  • PDF

잊혀질 권리의 도입과 적용에 관한 연구 (A Study for Applicating and Introducing the Right to be Forgotten)

  • 서윤희;장영현
    • 문화기술의 융합
    • /
    • 제2권3호
    • /
    • pp.23-28
    • /
    • 2016
  • 대형 포털사이트들이 매스미디어 매체들의 기능을 대체하기 시작하면서 새로운 위험요소가 제기되기 시작하였다. 시간이 지나도 무한대로 삭제되지 않고 남아있는 인터넷에 기록된 데이터들로 심각한 사생활 침해문제가 발생하게 되었다. 과거에 기록된 개인데이터를 기반으로 민감한 정보를 유추해 내기도 하고, 개인정보 자체가 유출당하기도 한다. 개인의 신상 털기를 통한 마녀사냥은 피해 당사자가 정상적인 생활이 불가능할 정도의 문제점으로 중대한 사회문제로 부각되고 있다. 따라서 본 논문에서는 국내외 사례분석을 통하여 온라인상의 자신과 관련된 정보를 삭제할 수 있는 '잊혀질 권리'의 필요성과 활성화 방안 및 적용에 관한 연구와 동시에 암호화 관리, 소유권 상속, 블라인드 처리 등의 개선방안을 제시한다.

Ginsenosides: potential therapeutic source for fibrosis-associated human diseases

  • Li, Xiaobing;Mo, Nan;Li, Zhenzhen
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.386-398
    • /
    • 2020
  • Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epitheliale-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.

Gas detonation cell width prediction model based on support vector regression

  • Yu, Jiyang;Hou, Bingxu;Lelyakin, Alexander;Xu, Zhanjie;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1423-1430
    • /
    • 2017
  • Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, ${\lambda}$, is highly correlated with the characteristic reaction zone width, ${\delta}$. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of ${\lambda}/{\delta}$. The obtained correlations formulate the dependency of the ratio ${\lambda}/{\delta}$ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR), which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.

Meeting the meat: delineating the molecular machinery of muscle development

  • Jan, Arif Tasleem;Lee, Eun Ju;Ahmad, Sarafraz;Choi, Inho
    • Journal of Animal Science and Technology
    • /
    • 제58권5호
    • /
    • pp.18.1-18.10
    • /
    • 2016
  • Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.