Browse > Article
http://dx.doi.org/10.1186/s40781-016-0100-x

Meeting the meat: delineating the molecular machinery of muscle development  

Jan, Arif Tasleem (School of Biotechnology, Yeungnam University)
Lee, Eun Ju (School of Biotechnology, Yeungnam University)
Ahmad, Sarafraz (School of Biotechnology, Yeungnam University)
Choi, Inho (School of Biotechnology, Yeungnam University)
Publication Information
Journal of Animal Science and Technology / v.58, no.5, 2016 , pp. 18.1-18.10 More about this Journal
Abstract
Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.
Keywords
Muscle; Muscle satellite cells; Muscle differentiation; Trans-differentiation;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Fiedler I, Ender K, Wicke M, Maak S, Von Lengerken G, Meyer W. Structural characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility and different meat quality. Meat Sci. 1999;53:9-15.   DOI
2 Bhasin S, Woodhouse L, Storer TW. Proof of the effect of testosterone on skeletal muscle. J Endocri. 2001;170:27-38.   DOI
3 Halevy O, Krispin A, Leshem Y, McMurtry JP, Yahav S. Early age heat exposure effects skeletal muscle satellite cell proliferation and differentiation in chicks. Am J Physiol Reg Integ Comp Physiol. 2001;281:302-9.   DOI
4 Sartorelli V, Fulco M. Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE. 2004;244:re11.
5 Sandri M. Signalling in muscle atrophy and hypertrophy. Physiology. 2008;23:160-70.   DOI
6 Egerman MA, Glass DJ. Signalling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2014;49:59-68.   DOI
7 Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Mod Mech. 2013;6:25-39.   DOI
8 Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanism and promising therapies. Nat Rev Drug Dis. 2015;14:58-74.   DOI
9 Laplante M, Sabatini DM. mTOR signalling in growth control and disease. Cell. 2012;149:274-93.   DOI
10 Lee SJ. Regulation of muscle mass by myostatin. Ann Rev Cell Dev Biol. 2004;20:61-86.   DOI
11 Elliott B, Renshaw D, Getting S, Mackenzie R. The central role of myostatin in skeletal muscle and whole body mass homeostasis. Acta Physiol. 2012; 205:324-40.   DOI
12 Du M, Yan X, Tong JF, Zhao J, Zhu MJ. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Rep. 2010b;82:4-12.   DOI
13 Feve B. Adipogenesis: cellular and molecular aspects. Best Prac Res; Clin Endo Met. 2005;19:483-99.   DOI
14 Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, Macnicol M, Peterson CA. Alterations in the TGF-${\beta}$ signaling pathway in myogenic progenitors with age. Aging Cell. 2004;3:353-61.   DOI
15 Bayol SA, Macharia R, Farrington SJ, Simbi BH, Stickland NC. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring. Eur J Nutr. 2009;48:62-5.   DOI
16 Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol. 2002;90:11G-8G.
17 Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzutto R. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci USA. 2008;105:1226-31.   DOI
18 Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486-8.   DOI
19 Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Sassi AH, Seiliez I, Picard B, Bonnieu A. Myostatin and the skeletal muscle atrophy and hypertrophy signalling pathways. Cell Mol Life Sci. 2014;71:4361-71.   DOI
20 McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new $TGF-{\beta}$ superfamily member. Nature. 1997;387:83-90.   DOI
21 Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, Christians E, Desmecht D, Coignoul F, Kahn R, George M. Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis. 2003;35(4):227-38.   DOI
22 Tsuchida K. Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice. Acta Myology. 2008;27:14-8.
23 Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA. 1998;95(25):14938-43.   DOI
24 Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr, Gonzalez-Cadavid N. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. AmJ Physiol End Met. 2001;280:E221-8.
25 Artaza JN, Bhasin S, Mallidis C, Taylor W, Ma K, Gonzalez-Cadavid NF. Endogenous expression and localization of myostatin and its relation to myosin heavy chain distribution in C2C12 skeletal muscle cells. J Cell Physiol. 2002;190:170-9.   DOI
26 Jiang MS, Liang LF, Wang S, Ratovitski T, Holmstrom J, Barker C, Stotish R. Characterization and identification of the inhibitory domain of GDF-8 propeptide. Biochem Biophy Res Comm. 2004;315:525-31.   DOI
27 Lahoute C, Sotiropoulos A, Favier M, Guillet-Deniau I, Charvet C, Ferry A, Butler-Browne G, Metzger D, Tuil D, Daegelen D. Premature aging in skeletal muscle lacking serum response factor. PLoS ONE. 2008;3:e3910.   DOI
28 Dodson MV, Fernyhough ME. Mature adipocytes: Are there still novel things that we can learn from them? Tis Cell. 2008;40:307-8.   DOI
29 Dodson MV, Jiang Z, Chen J, Hausman GJ, Guan LL, Novakofsi J, Thompson DP, Lorenzen CL, Fernyhough ME, Mir PS, Reecy JM. Allied industry approaches to alter intramuscular fat content and composition in beef animals. J Food Sci. 2010;75:R1-8.   DOI
30 Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM, Qiu Y. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem. 2002;277:40735-41.   DOI
31 Attisano L, Wrana JL. Signal transduction by the $TGF-{\beta}$ superfamily. Science. 2002;296:1646-7.   DOI
32 Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA. 2001;98:9306-11.   DOI
33 Bradley L, Yaworsky PJ, Walsh FS. Myostatin as a therapeutic target for musculoskeletal disease. Cell Mol Life Sci. 2008;65:2119-24.   DOI
34 Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737-40.   DOI
35 Joulia-Ekaza D, Cabello G. Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects. Exp Cell Res. 2006;312:2401-14.   DOI
36 Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major smad pathways in TGF-${\beta}$ superfamily signalling. Genes Cell. 2002;7:1191-204.   DOI
37 Yan XH, Chen YG. Smad7: Not only a regulator, but also a cross-talk mediator of $TGF-{\beta}$ signalling. Biochem J. 2011;434:1-10.   DOI
38 Poulos S, Hausman G. A comparison of thiazolidinedione-induced adipogenesis and myogenesis in stromal-vascular cells from subcutaneous adipose tissue or semitendinosus muscle of postnatal pigs. J Anim Sci. 2006;84:1076-82.   DOI
39 Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, adipogenic differentiation. Differentiation. 2001;68:245-53.   DOI
40 Fux C, Mitta B, Kramer BP, Fussenegger M. Dual regulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acid Res. 2004;32:e1.   DOI
41 Kook SH, Choi KC, Son YO, Lee KY, Hwang IH, Lee HJ, Chang JS, Choi IH, Lee JC. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol Cell. 2006;22:239-45.
42 Tong J, Zhu MJ, Underwood KR, Hess BW, Ford SP, Du M. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J Anim Sci. 2008;86:1296-305.   DOI
43 Bettencourt EMV, Tilman M, Narciso V, Carvalho MLS, Henriques PDS. The livestock roles in the wellbeing of rural communities of Timor-Leste. Rev de Eco Soc Rural. 2015;53(S1):63-80.   DOI
44 Lee EJ, Lee HJ, Kamli MR, Pokharel S, Bhat AR, Lee YH, Choi BH, Chun TH, Kang SW, Lee YS, Kim JW, Schnabel RD, Taylor JF, Choi I. Depot-specific gene expression profiles during differentiation and transdifferentiation of bovine muscle satellite cells, and differentiation of preadipocyte. Genomics. 2012a;100:195-202.   DOI
45 Lee EJ, Bajracharya P, Lee DM, Kang SW, Lee YS, Lee HJ, Hong SK, Chang JS, Kim JW, Schnabel RD, Tayler JF, Choi I. Gene expression profiles during differentiation and transdifferentiation of bovine myogenic satellite cells. Genes Genom. 2012b;34:133-48.   DOI
46 Zhu X, Topouzis S, Liang LF, Stotish RL. Myostatin signalling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine. 2004a;26:262-72.   DOI
47 Singh NK, Chae HS, Hwang IH, Yoo YM, Ahn CN, Lee SH, Lee HJ, Park HJ, Chung HY. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J Anim Sci. 2007;85:1126-35.   DOI
48 Teboul L, Gaillard D, Staccini L, Inadera H, Amri EZ, Grimaldi PA. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem. 1995;270:28183-7.   DOI
49 Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci USA. 1995;10:9856-60.
50 Lee EJ, Bajracharya P, Jang EJ, Lee HJ, Jang JS, Hong SG, Choi I. Effect of sex steroid hormones on bovine myogenic satellite cell proliferation, differentiation and lipid accumulation in myotube. Asian-Austra J Ani Sci. 2010;23:649-58.   DOI
51 Lee SJ, Lee EJ, Kim SH, Choi I, Lee DM, Lee HJ, Yoon DH, Chun TH. IL-17A promotes transdifferentiation of myoblasts into adipocytes by increasing expression of PPAR${\gamma}$ through C/EBP${\beta}$. Biotech Lett. 2011;33:229-35.   DOI
52 Kim JH, Kim M, Nahm SS, Lee DM, Pokharel S, Choi I. Characterization of Gender-Specific Bovine Serum. Anim Cell Sys. 2011;15:147-54.   DOI
53 Park JH, Park JH, Nahm SS, Choi I, Kim JH. Identification of anti-adipogenic proteins in adult bovine serum suppressing the differentiation of 3T3-L1 preadipocytes. BMB Rep. 2013;46:582-7.   DOI
54 Lee EJ, Kamli MR, Pokharel S, Malik A, Tareq KMA, Bhat AR, Park HB, Lee YS, Kim SH, Yang BS, Jeong KY, Choi I. Expressed sequence tags for bovine muscle satellite cells, myotube-formed cells and adipocyte-like cells. PLoS ONE. 2013a;8(11):e79780.   DOI
55 Lee EJ, Bhat AR, Kamli MR, Pokharel S, Chun T, Lee YH, Nahm SS, Nam JH, Hong SK, Yanh B, Chung KY, Kim SH, Choi I. Transthyretin is a key regulator of myoblast differentiation. PLoS ONE. 2013b;8(5):e63627.   DOI
56 Pokharel S, Kamli MR, Mir BA, Malik A, Lee EJ, Choi I. Expression of transthyretin during bovine myogenic satellite cell differentiation. In Vitro Cel Dev Biol-Anim. 2014;50:756-65.   DOI
57 Lee EJ, Malik A, Pokharel S, Ahmad S, Mir BA, Cho KH, Kim JH, Kong JC, Lee DM, Chung KY, Kim SH, Choi I. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS ONE. 2014a;9:e92447.   DOI
58 Lokireddy S, McFarlane C, Ge XJ, Zhang HM, Sze SK, Sharma M, Kambadur R. Myostatin induces degradation of sarcomeric proteins through a smad3 signaling mechanism during skeletal muscle wasting. Mol End. 2011;25:1936-49.   DOI
59 Forbes D, Jackman M, Bishop A, Thomas M, Kambadur R, Sharma M. Myostatin auto-regulates its expression by feedback loop through Smad7 dependent mechanism. J Cell Physiol. 2006;206:264-72.   DOI
60 Goodman CA, McNally RM, Hoffmann FM, Hornberger TA. Smad3 induces atrogin-1, inhibits mtor and protein synthesis, and promotes muscle atrophy in vivo. Mol End. 2013;27:1946-57.   DOI
61 Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296:C1258-70.   DOI
62 Velloso CP. Regulation of muscle mass by growth hormone and IGF-1. Br J Pharmacol. 2008;154:557-68.   DOI
63 Beermann DH, DeVol D. Effects of somatotrophin, somatotrophin releasing factor and somatostatin on growth. In: Pearson AM, Dutson TR, editors. Growth Regulation in Farm Animals. Advances in Meat Research, vol. 7. London: Elsevier; 1991. p. 373-426.
64 Etherton TD, Bauman DE. Biology of somatotrophin in growth and lactation of domestic animals. Physiol Rev. 1998;78:745-61.   DOI
65 Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. Thyroid hormones and skeletal muscle: New insights and potential implications. Nat Rev End. 2014;10:206-14.   DOI
66 Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z. Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol. 2007;304:246-59.   DOI
67 Malik A, Lee EJ, Jan AT, Ahmad S, Cho KH, Kim J, Choi I. Network analysis for the identification of differentially expressed hub genes using myogenin knock-down muscle satellite cells. PLoS ONE. 2015;10(7):e0133597.   DOI
68 Yin H, Price F, Rudnicki MA. Satellite Cells and the Muscle Stem Cell Niche. Physiol Rev. 2013;93(1):23-67.   DOI
69 Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004;166:347-57.   DOI
70 Day K, Shefer G, Shearer A, Yablonka-Reuveni Z. The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol. 2010;340:330-43.   DOI
71 Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn. 2004;231:489-502.   DOI
72 Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS ONE. 2010;5:e13307.   DOI
73 Lindstrom M, Thornell LE. New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol. 2009;132:141-57.   DOI
74 Capers CR. Multinucleation of skeletal muscle in vitro. J Biophy Biochem Cytol. 1960;7:559-67.   DOI
75 Lindstrom M, Pedrosa-Domellof F, Thornell LE. Satellite cell heterogeneity with respect to expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men. Histochem Cell Biol. 2010;134:371-85.   DOI
76 Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham M, Partridge TA, Zammit PS. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000;151:1221-34.   DOI
77 Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005;309:2064-7.   DOI
78 Allouh MZ, Yablonka-Reuveni Z, Rosser BW. Pax7 reveals a greater frequency and concentration of satellite cells at the ends of growing skeletal muscle fibers. J Histo Cytochem. 2008;56:77-87.   DOI
79 Cooper WG, Konigsberg IR. Dynamics of myogenesis in vitro. Anat Rec. 1961;140:195-205.   DOI
80 Konigsberg UR, Lipton BH, Konigsberg IR. The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol. 1975;45:260-75.   DOI
81 Bischoff R. Regeneration of single skeletal muscle fibers in vitro. Anat Rec. 1975;182:215-35.   DOI
82 Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001;91:534-51.   DOI
83 Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005;122:289-301.   DOI
84 Aleshire SL, Bradley CA, Richardson LD, Parl FF. Localization of human prealbumin in choroid plexus epithelium. J Histo Cytochem. 1983;31:608-12.   DOI
85 Alshehri B, D'Souza DG, Lee JY, Petratos S, Richardson SJ. Diversity of mechanisms influenced by transthyretin in neurobiology: Development, disease and endocrine disruption. J Neuroend. 2015;27:303-23.   DOI
86 Mendel CM, Weisiger RA, Jones AL, Cavalieri RR. Thyroid hormone binding proteins in plasma facilitate uniform distribution of thyroxine within tissues - a perfused rat liver study. Endocri. 1987;120:1742-9.   DOI
87 Schreiber G, Richardson SJ. The evolution of gene expression, structure and function of transthyretin. Comp Biochem Physiol B; Biochem Mol Biol. 1997;116:137-60.   DOI
88 Dickson PW, Aldred AR, Menting JG, Marley PD, Sawyer WH, Schreiber G. Thyroxine transport in choroid plexus. J Biol Chem. 1987;262:13907-15.
89 Raz A, Goodman DS. The interaction of thyroxine with human plasma prealbumin and with the prealbumin-retinol-binding protein complex. J Biol Chem. 1969;244:3230-7.
90 Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochim Biophys Acta. 1849;2015:130-41.
91 Hancock DL, Wagner JF, Anderson DB. Effects of estrogens and androgens on animal growth. In: Pearson AM, Dutson TR, editors. Growth Regulation in Farm Animals. Advances in Meat Research, vol. 7. Elsevier Applied Science: New York, NY; 1991. p. 255-97.
92 Spencer GSG. Hormonal systems regulating growth. A review. Livesto Prod Sci. 1985;12:31-46.   DOI
93 Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Ann Rev Cell Dev Biol. 2007;23:645-73.   DOI
94 Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 2008;456:502-6.   DOI
95 Zammit P, Beauchamp J. The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation. 2001;68:193-204.   DOI
96 Day K, Paterson B, Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within $Pax7^+$ cells at S phase supports a unique role of Myf5 during post hatch chicken myogenesis. Dev Dyn. 2009;238:1001-9.   DOI
97 Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimaraes-Camboa N, Evans SM, Tzahor E. Distinct origins and genetic programs of head muscle satellite cells. Dev Cell. 2009;16:822-32.   DOI
98 Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol. 2010;337:29-41.   DOI
99 Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev Biol. 2007;7:95.   DOI
100 Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, Choy YH, Kim HC, Jeon KJ, Kim SD, Yeon SH, Park SB, Kang HS. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Tech. 2014b;56:2.   DOI
101 Zhu MJ, Ford SP, Nathanielsz PW, Du M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol Rep. 2004b;71:1968-73.   DOI
102 Kamanga-Sollo E, White ME, Chung KY, Johnson BJ, Dayton WR. Potential role of G-protein-coupled receptor 30 (GPR30) in estradiol-17beta-stimulated IGF-I mRNA expression in bovine satellite cell cultures. Domes Ani End. 2008;35:254-62.   DOI
103 Florini JR. Hormonal-control of muscle growth. Mus Nerve. 1987;10:577-98.   DOI
104 Zhu MJ, Han B, Tong J, Ma C, Kimzey JM, Underwood KR, Xiao Y, Hess B W, Ford SP, Nathanielsz PW, Du M. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in foetuses of obese, over-nourished sheep. J Physiol. 2008;586:2651-64.   DOI
105 Tong JF, Yan X, Zhu MJ, Ford SP, Nathanielsz PW, Du M. Maternal obesity downregulates myogenesis and beta-catenin signaling in fetal skeletal muscle. Am J Physiol End Met. 2009;296:E917-924.
106 Yan X, Zhu MJ, Xu W, Tong JF, Ford SP, Nathanielsz PW, Du M. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinol. 2010;151:380-7.   DOI
107 Morgan JE, Partridge TA. Muscle satellite cells. Int J Biochem Cell Biol. 2003;35:1151-6.   DOI
108 Cheek DB, Hill DB, Cornando A, Graham GG. Malnutrition in infancy: changes in muscle and adipose tissue before and after rehabilitation. Paediat Res. 1970;4:135-44.   DOI
109 Cassens RG, Cooper CC. Red and white muscle. Adv Food Res. 1971;19:1-74.
110 Henckel P, Oksbjerg N, Erlandsen E, Barton-Gade P, Bejerholm C. Histo- and biochemical characteristics of the longissimus dorsi muscle in pigs and their relationships to performance and meat quality. Meat Sci. 1997;47:311-21.   DOI
111 Beermann DH, Butler WR, Hogue DE, Fishell VK, Dalrymple RH, Ricks A, Scanes CG. Cimaterol-induced muscle hypertrophy and altered endocrine status in lambs. J Anim Sci. 1987;65:1514-24.   DOI
112 Lee EJ, Choi J, Hyun JH, Cho KH, Hwang I, Lee HJ, Chang J, Choi I. Steroid effects on cell proliferation, differentiation and steroid receptor gene expressionin adult bovine satellite cells. Asian-Austra J Anim Sci. 2007;20:501-10.   DOI
113 Wheeler TL, Koohmaraie M. Prerigor and postrigor changes in tenderness of bovine longissimus muscle. J Anim Sci. 1994;72:1232-8.   DOI
114 Maltin CA, Delday MI, Hay SM, Innes GM, Williams PE. Effects of bovine pituitary growth hormone alone or in combination with the beta-agonist clenbuterol on muscle growth and composition in veal calves. Brit J Nutr. 1990;63:535-45.   DOI
115 Sainz RD, Kim YS, Dunshea FR, Campbell RG. Effects of ractopamine in pig muscles - histology, calpains and ${\beta}$-adrenergic receptors. Aust J Agric Res. 1993;44:1441-8.   DOI
116 Rehfeldt C, Schadereit R, Weikard R, Reichel K. Effect of the beta-adrenergic agonist clenbuterol on growth, carcass and skeletal muscle characteristics in broiler chickens. Br Poult Sci. 1997;38:368-75.
117 Klont RE, Brocks L, Eikelenboom G. Muscle fibre type and meat quality. Meat Sci. 1998;49(1):S219-29.   DOI
118 Seideman SC, Crouse JD. The effects of sex condition, genotype and diet on bovine muscle fiber characteristics. Meat Sci. 1986;17:55-72.   DOI
119 Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW. Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci. 2010a;88:E51-60.   DOI
120 Jeremiah LE, Gibson LL, Aalhus JL, Dugan MER. Assessment of palatability attributes of the major beef muscles. Meat Sci. 2003;65:949-58.   DOI