• Title/Summary/Keyword: neutral difference equations

Search Result 28, Processing Time 0.023 seconds

OSCILLATIONS FOR EVEN-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhou, Zhan;Yu, Jianshe;Lei, Guanglong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.833-842
    • /
    • 2000
  • Consider the even-order neutral difference equation (*) ${\delta}^m(x_n{-}p_ng(x_{n-k}))-q_nh(x_{n-1})=0$, n=0,1,2,... where $\Delta$ is the forward difference operator, m is even, ${-p_n},{q_n}$ are sequences of nonnegative real numbers, k, l are nonnegative integers, g(x), h(x) ${\in}$ C(R, R) with xg(x) > 0 for $x\;{\neq}\;0$. In this paper, we obtain some linearized oscillation theorems of (*) for $p_n\;{\in}\;(-{\infty},0)$ which are discrete results of the open problem by Gyori and Ladas.

EXISTENCE AND MANN ITERATIVE METHODS OF POSITIVE SOLUTIONS OF FIRST ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Hao, Jinbiao;Kang, Shin Min
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.299-309
    • /
    • 2010
  • In this paper, we study the first order nonlinear neutral difference equation: $${\Delta}(x(n)+px(n-{\tau}))+f(n,x(n-c),x(n-d))=r(n),\;n{\geq}n_0$$. Using the Banach fixed point theorem, we prove the existence of bounded positive solutions of the equation, suggest Mann iterative schemes of bounded positive solutions, and discuss the error estimates between bounded positive solutions and sequences generated by Mann iterative schemes.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF FORCED NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Liu, Yuji;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.37-51
    • /
    • 2004
  • In this paper, we consider the asymptotic behavior of solutions of the forced nonlinear neutral difference equation $\Delta[x(n)-\sumpi(n)x(n-k_i)]+\sumqj(n)f(x(n-\iota_j))=r(n)$ with sign changing coefficients. Some sufficient conditions for every solution of (*) to tend to zero are established. The results extend and improve some known theorems in literature.

BOUNDED OSCILLATION OF SECOND ORDER UNSTABLE NEUTRAL TYPE DIFFERENCE EQUATIONS

  • Thandapani, E.;Arul, R.;Raja, P.S.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.79-90
    • /
    • 2004
  • In this paper the authors present sufficient conditions for all bounded solutions of the second order neutral difference equation ${\Delta}^2(y_n\;-\;py_{n-{\kappa}})\;-\;q_nf(y_{n-e})\;=\;0,\;n\;{\in}\;N$ to be oscillatory. Examples are provided to illustrate the results.

COMPARISON THEOREMS ON THE OSCILLATION OF A CLASS OF NEUTRAL DIFFERENCE EQUATIONS WITH CONTINUOUS VARIABLES

  • Karpuz, Basak;Ocalan, Ozkan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.401-409
    • /
    • 2010
  • In this paper, we introduce an iterative method to study oscillatory properties of delay difference equations of the following form ${\nabla}_{\alpha}\;[x(t)\;-\;r(t)x(t\;-\;k)]\;+\;p(t)x(t\;-\;{\tau})\;-\;q(t)x(t\;-\;{\sigma})\;=\;0$, $t\;{\geq}\;t_0$, where $t_0\;{\in}\;\mathbb{R}$, t varies in the real interval ($t_0,\;{\infty}$), $\alpha$ > 0, $\kappa$, $\tau$, ${\sigma}\;{\geq}\;0$, $r\;{\in}\;C\;([t_0-{\alpha},\;{\infty}),\;\mathbb{R}^+$, p, $q\;{\in}\;C\;([t_0,\;{\infty}),\;\mathbb{R}^+)$ and ${\nabla}_{\alpha}x(t)\;=\;x(t)\;-\;x(t\;-\;{\alpha})$ for $t\;{\geq}\;t_0$.

Oscillation of Linear Second Order Delay Dynamic Equations on Time Scales

  • Agwo, Hassan Ahmed
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.425-438
    • /
    • 2007
  • In this paper, we establish some new oscillation criteria for a second-order delay dynamic equation $$u^{{\Delta}{\Delta}}(t)+p(t)u(\tau(t))=0$$ on a time scale $\mathbb{T}$. The results can be applied on differential equations when $\mathbb{T}=\mathbb{R}$, delay difference equations when $\mathbb{T}=\mathbb{N}$ and for delay $q$-difference equations when $\mathbb{T}=q^{\mathbb{N}}$ for q > 1.

  • PDF

OSCILLATORY OF UNSTABLE TYPE SECOND-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Ping, Bi;Dong, Wenlei
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.87-99
    • /
    • 2002
  • We consider the problem of oscillation and nonoscillation solutions for unstable type second-order neutral difference equation : $\Delta^2(x(n))-p(n)x(n-\tau))=q(n)x(g(n))$. (1) In this paper, we obtain some conditions for the bounded solutions of Eq(1) to be oscillatory and for the existence of the nonoscillatory solutions.

EXISTENCE OF NONOSCILLATORY SOLUTIONS OF HIGHER-ORDER DIFFERENCE EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS

  • Li, Qiaoluan;Liang, Haiyan;Dong, Wenlei;Zhang, Zhenguo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.23-31
    • /
    • 2008
  • In this paper, we investigate nonoscillatory solutions of a class of higher order neutral nonlinear difference equations with positive and negative coefficients $\Delta^m(x(n)+p(n)x(\tau(n)))+f_1(n,x(\sigma_1(n)))-f_2(n,x(\sigma_2(n)))=0,\;n{\geq}n_0$. Some sufficient conditions for the existence of nonoscillatory solutions are obtained.

PERIODIC SOLUTIONS IN NONLINEAR NEUTRAL DIFFERENCE EQUATIONS WITH FUNCTIONAL DELAY

  • MAROUN MARIETTE R.;RAFFOUL YOUSSEF N.
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.255-268
    • /
    • 2005
  • We use Krasnoselskii's fixed point theorem to show that the nonlinear neutral difference equation with delay x(t + 1) = a(t)x(t) + c(t)${\Delta}$x(t - g(t)) + q(t, x(t), x(t - g(t)) has a periodic solution. To apply Krasnoselskii's fixed point theorem, one would need to construct two mappings; one is contraction and the other is compact. Also, by making use of the variation of parameters techniques we are able, using the contraction mapping principle, to show that the periodic solution is unique.

CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF SECOND ORDER SELF-ADJOINT NEUTRAL DIFFERENCE EQUATIONS

  • Liu, Yujun;Liu, Zahaoshuang;Zhang, Zhenguo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.237-249
    • /
    • 2004
  • Consider the second order self-adjoint neutral difference equation of form $\Delta(a_n$\mid$\Delta(x_n\;-\;{p_n}{x_{{\tau}_n}}$\mid$^{\alpha}sgn{\Delta}(x_n\;-\;{p_n}{x_{{\tau}_n}}\;+\;f(n,\;{x_{g_n}}\;=\;0$. In this paper, we will give the classification of nonoscillatory solutions of the above equation; and by the fixed point theorem, we present some existence results for some kinds of nonoscillatory solutions of the equation.