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COMPARISON THEOREMS ON THE OSCILLATION OF
A CLASS OF NEUTRAL DIFFERENCE EQUATIONS

WITH CONTINUOUS VARIABLES

Başak Karpuz and Özkan Öcalan

Abstract. In this paper, we introduce an iterative method to study
oscillatory properties of delay difference equations of the following form

∇α [x (t)− r (t) x (t− κ)] + p (t) x (t− τ)− q (t) x (t− σ) = 0, t ≥ t0,

where t0 ∈ R, t varies in the real interval [t0,∞), α > 0, κ, τ, σ ≥ 0,
r ∈ C

`
[t0 − α,∞) ,R+

´
, p, q ∈ C

`
[t0,∞) ,R+

´
and ∇αx (t) = x (t) −

x (t− α) for t ≥ t0.

1. Introduction

There are so many studies developed on the oscillation of differential equa-
tions and difference equations in the past two decades. However, there are
very few studies investigating the oscillatory behavior of difference equations
with continuous variables. The readers are referred to [1] for the fundamentals
of the oscillation theory of differential equations and [2]-[9] for fundamental
results on difference equations with continuous arguments. In this paper, we
study oscillatory behavior of a neutral difference equation of the form

(1) ∇α [x (t)− r (t)x (t− κ)] + p (t) x (t− τ)− q (t)x (t− σ) = 0,

where t ≥ t0 and t travels through reals, r ∈ C ([t0 − α,∞) ,R+), p, q ∈
C ([t0,∞) ,R+), κ > α > 0, τ > σ > α. Here, ∇α denotes the backward
difference operator with the step α, that is, ∇αx (t) = x (t) − x (t− α) for
t ≥ t0. For convenience in the paper, we set

β :=

{
τ, r ≡ 0

max {κ + α, τ} , r 6≡ 0
and γ :=

{
σ, r ≡ 0

min {κ, σ} , r 6≡ 0.

A function x ∈ C ([t0 − β,∞) ,R) is called a solution of (1) if x satisfies
(1) on [t0,∞). As is customary, a solution of (1) is called oscillatory if it
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has arbitrary large zeros; otherwise, such a solution is called nonoscillatory.
Throughout the work, eventually trivial solutions of (1) are out of our interest.

2. Main results

For an arbitrary continuous function f denote the n-th minimized function
by

f (n) (t) :=

{
f (t) , n = 0
min

{
f (n−1) (η) : t− α ≤ η ≤ t

}
, n ∈ N,

and let h (t) := p (t)− q (t− τ + σ).
Before stating our main results, we need to give some lemmas as follows.

We start with the following lemma which is an extension of [5, Lemma 1].

Lemma 2.1. Assume that

(2) h (t) ≥ 0 ( 6≡ 0) and
∫ t

t−α

r (η) dη +
∫ t

t−τ+σ

q (η) dη ≤ α

hold for all sufficiently large t. Let x be an eventually positive solution of (1).
Then the companion function of x given by
(3)

zx (t) :=
∫ t

t−α

x (η) dη−
∫ t

t−α

r (η)x (η−κ) dη−
∫ t

t−τ+σ

q (η) x (η−σ) dη, t ≥ t0+β

satisfies

(4) z′x ≤ 0 ( 6≡ 0), zx > 0

on a subhalfline of [t0,∞). Moreover,

(5) ∇αzx (t) + h(1) (t) zx (t− τ) ≤ 0

holds on a subhalfline of [t0,∞).

Proof. Let t1 ≥ t0 satisfy (2) for all t ≥ t1. Using the fact that x is a solution
of (1), we have

z′x (t) = ∇α [x (t)− r (t)x (t− κ)]− q (t)x (t− σ) + q (t− τ + σ) x (t− τ)(6)

= −h (t)x (t− τ) ≤ 0 ( 6≡ 0)

for all t ≥ t2, where t2 ≥ t1 + τ . Hence, there exists t3 ≥ t2 such that zx is
of constant sign on [t3,∞). We claim that zx is of positive sign. Assume the
contrary that zx (t) ≤ 0 holds for all t ≥ t3. Then, there exist t4 ≥ t3 and a
constant µ > 0 satisfying zx (t) < −µ for all t ≥ t4. Let φ : [t4,∞) → R be the
function satisfying the mean value

αx (φ (t)) =
∫ t

t−α

x (η) dη
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for all t ≥ t4. Note that γ ≥ α and t − α ≤ φ (t) ≤ t for all t ≥ t4. In view of
the definition of zx in (3), we obtain

αx (φ (t)) < −µ +
(∫ t

t−α

r (η) dη +
∫ t

t−τ+σ

q (η) dη

)
max

t−β≤η≤t−γ
x (η)(7)

≤ −µ + α max
t−β−α≤η≤t

x (φ (η))

for all t ≥ t4. By the well-known result [1, Lemma 1.5.4], (7) yields a contra-
diction that x◦φ can not be a positive function. This proves zx > 0 on [t3,∞),
that is, (4) holds. Integrating (6) over [t− α, t], we get

∇αzx (t) +
∫ t

t−α

h (η)x (η − τ) dη = 0,

or

(8) ∇αzx (t) + h(1) (t)
∫ t

t−α

x (η − τ) dη ≤ 0

for all t ≥ t3. Taking (3) into account, we see that

(9)
∫ t

t−α

x (η) dη ≥ zx (t)

holds for all t ≥ t4, where t4 ≥ t3 + τ . Substituting (9) into (8), we see that
(5) holds on [t4,∞). Hence, the proof is completed. ¤

Now, we state the following result extracted from [3]:

Lemma 2.2. Consider the following delay differential equation

(10) x′ (t) + A (t)x (t− ρ) = 0,

where ρ > 0 and A ∈ C ([t0,∞) ,R+), and the corresponding delay differential
inequality

(11) x′ (t) + A (t)x (t− ρ) ≤ 0.

(10) possesses eventually positive solutions if and only if so does (11).

We give the following comparison theorem:

Theorem 2.1. Assume that (2) holds for all sufficiently large t. If every
solution of

(12) y′ (t) +
1
α

h(1) (t) y (t− τ + α) = 0

is oscillatory, then every solution of (1) is oscillatory.

Proof. Assume the contrary that (1) has nonoscillatory solution x. Since (1) is
linear, there is no loss in assuming x as an eventually positive solution. Then,
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we have by Lemma 2.1 that zx introduced in (3) is nonincreasing. Let t1 ≥ t0
satisfy (2), x (t) > 0, z′x (t) ≤ 0 ( 6≡ 0) and zx (t) > 0 for all t ≥ t1. Now, we set

(13) y (t) :=
∫ t

t−α

zx (η) dη

for t ≥ t2, where t2 ≥ t1 + α, then we have

(14) y′ (t) = ∇αzx (t) ≤ 0

for all t ≥ t2. Since zx is nonincreasing and positive on [t2,∞), we deduce from
(13) that

(15) 0 <
1
α

y (t) ≤ zx (t− α)

holds for all t ≥ t2. Considering (5), (14) and (15), we get that

y′ (t) +
1
α

h(1)y (t− τ + α) ≤ 0,

which indicates that the corresponding differential equation (12) has an even-
tually positive solution by Lemma 2.2. This contradiction completes the proof.

¤

The following corollary allows us to test oscillatory behavior of all solutions
of (1). For convenience, we introduce

h := lim sup
t→∞

1
α

∫ t

t−τ+α

h(2) (η) dη and h := lim inf
t→∞

1
α

∫ t

t−τ+α

h(2) (η) dη.

Corollary 2.1. Assume that (2) holds for all sufficiently large t. If

(16) h > 1 or h >
1
e

or

(17) h ≤ 1
e

and h > 1− 1− h−
√

1− 2h− h2

2
holds, then every solution of (1) is oscillatory.

Proof. (12) can not have eventually positive solutions under either one of the
conditions (16) or (17). ¤

Now, we introduce

Λ (t) := {λ > 0 : 1− λh (s) > 0 for all s ≥ t}
and

τ1 :=
⌊ τ

α

⌋
,

where b·c denotes the lowest integer function.



COMPARISON THEOREMS ON THE OSCILLATION 405

Corollary 2.2. Assume that (2) holds for all sufficiently large t, and

lim supt→∞ h (t) > 0

holds. Furthermore, assume that τ1 ∈ N and

lim sup
t→∞

sup
λ∈Λ(t)

(
λ

τ1−1∏

i=1

[
1− λh(2) (t− iα)

])
< 1.

Then every solution of (1) is oscillatory.

Proof. The proof follows from the papers [2, 4, 7]. ¤

3. Iterative results

In this section, we improve the results of the previous section by iteration.
We first improve Lemma 2.1 by introducing τ2 := b(τ − σ) /αc and the

recursion
(18)

hn (t) :=





1, n = 0

r(1) (t) hn−1 (t− κ) +
τ2−1∑

j=0

q(1) (t− jα) hn−1 (t− jα− σ) , n ∈ N.

Lemma 3.1. Assume that τ2 ∈ N and all conditions of Lemma 2.1 are held.
Then, for each n ∈ N, there exists a halfline Jn ⊂ [t0,∞) such that zx intro-
duced in (3) satisfies

(19) ∇αzx (t) + h(1) (t)
n∑

i=0

hi (t− τ) zx (t− τ) ≤ 0

for all t ∈ Jn.

Proof. Assume that conclusions of Lemma 2.1 hold for all t ≥ t1, where t1 ≥ t0.
Let hn function in (18) be defined for t ≥ t1 + nβ, where n ∈ N. We see from
(3) for t ≥ t1 that

∫ t

t−α

x (η) dη = zx (t) +
∫ t

t−α

r (η)x (η − κ) dη +
∫ t

t−τ+σ

q (η)x (η − σ) dη

(20)

≥ zx (t) + r(1) (t)
∫ t

t−α

x (η − κ) dη

+
τ2−1∑

j=0

q(1) (t− jα)
∫ t−jα

t−(j+1)α

x (η − σ) dη

holds. Now, we prove by induction that

(21)
∫ t

t−α

x (η) dη ≥
m∑

i=0

hi (t) zx (t)
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holds for all t ≥ t1 + mβ and m = 0, 1, . . . , n. Clearly, the above inequality
holds for m = 0 trivially from (9). Suppose that (21) holds for m = n− 1 and
all t ≥ t1 + (n− 1)β. Now, we show that (21) also holds for m = n and all
t ≥ t1 + nβ. Consequently, from (20), (21) and the nonincreasing nature of zx,
we have

∫ t

t−α

x (η) dη

(22)

≥ zx (t) + r(1) (t)
n−1∑

i=0

hi (t− κ) zx (t− κ)

+
n−1∑

i=0

τ2−1∑

j=0

q(1) (t− jα)hi (t− jα− σ) zx (t− jα− σ)

≥

1 +

n−1∑

i=0


r(1) (t) hi (t− κ) +

τ2−1∑

j=0

q(1) (t− jα) hi (t− jα− σ)





 zx (t)

=

(
1 +

n−1∑

i=0

hi+1 (t)

)
zx (t) =

n∑

i=0

hi (t) zx (t)

for all t ≥ t1 + nβ. Substituting (22) into (8), we obtain that (19) holds on
Jn := [t1 + nβ,∞). This completes the proof of the lemma. ¤

Remark 3.1. Note that Lemma 2.1 is a particular case of Lemma 3.1 with
n = 0.

Now, we give the following result which is an extension of Theorem 2.1:

Theorem 3.1. Assume that assumptions of Lemma 3.1 are held. If there exists
n0 ∈ N such that every solution of

(23) y′ (t) +
1
α

h(1) (t)
n0∑

i=0

hi (t− τ) y (t− τ + α) = 0

is oscillatory, then every solution of (1) is also oscillatory.

Proof. Since all assumptions of Lemma 2.1, Theorem 2.1 and Lemma 3.1 are
held. Considering (14), (15), and substituting (13) into (19), we see that the
corresponding equation (23) has an eventually positive solution by Lemma 2.2,
and this contradiction completes the proof. ¤

For convenience, we need to introduce the followings:

h (n) := lim sup
t→∞

1
α

∫ t

t−τ+α

h(2) (η)
n∑

i=0

hi (η − τ) dη,
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h (n) := lim inf
t→∞

1
α

∫ t

t−τ+α

h(2) (η)
n∑

i=0

hi (η − τ) dη.

Corollary 3.1. Assume that assumptions of Lemma 3.1 are held. If there
exists n0 ∈ N satisfying

h (n0) > 1 or h (n0) >
1
e

or

h (n0) ≤ 1
e

and h (n0) > 1−
1− h (n0)−

√
1− 2h (n0)− h (n0)

2

2
,

then every solution of (1) is oscillatory.

Corollary 3.2. Assume that assumptions of Lemma 3.1 are held. If h (∞) >
1/e or h (∞) > 1 holds, then every solution of (1) is oscillatory.

Proof. The claim follows by Corollary 3.1, since h (n) is nondecreasing and
h (∞) > 1/e or h (∞) > 1 holds. ¤

The following theorem is useful for testing oscillatory behavior of (1) when
r and q are nonincreasing functions.

Theorem 3.2. Assume that assumptions of Lemma 3.1 are held. Moreover, r
and q are nonincreasing. If there exists n0 ∈ N such that

lim inf
t→∞

1
α

∫ t

t−τ+α

h(2) (η)
n0∑

i=0

[r (η) + τ2q (η)]i dη >
1
e

or

lim sup
t→∞

1
α

∫ t

t−τ+α

h(2) (η)
n0∑

i=0

[r (η) + τ2q (η)]i dη > 1

holds, then every solution of (1) is oscillatory.

Proof. Since, r and q are nonincreasing, we eventually have

h0 (t) = 1,

h1 (t) = r(1) (t) +
τ2−1∑

j=0

q(1) (t− jα) ≥ r (t) + τ2q (t) ,

and in general, we can see that

hn (t) ≥ [r (t) + τ2q (t)]n , n ∈ N
holds. Applying Corollary 3.1, we see that every solution of (1) is oscillatory.

¤

Now, we consider the following scalar equation

(24) ∇α [x (t)− rx (t− κ)] + px (t− τ)− qx (t− σ) = 0.
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Theorem 3.3. Assume that

τ2 =
⌊

τ − σ

α

⌋
∈ N,

r ≥ 0, p > q ≥ 0,

0 ≤ αr + q (τ − σ) ≤ α

hold. If

(25)
(τ − α) (p− q)

α (1− (r + τ2q))
>

1
e

holds, then every solution of (24) is oscillatory.

Proof. As is estimated in Theorem 3.2, we have hn (t) = [r + τ2q]
n for n ∈ N.

Now, we consider the following two possible cases:
Case 1. r + qτ2 ≥ 1. In this case, we see that

h (n) =
(τ − α) (p− q)

α

n∑

i=0

[r + τ2q]
i ≥ (τ − α) (p− q)

α

n∑

i=0

1

=
(τ − α) (p− q)

α
(n + 1)

which implies h (∞) = ∞, therefore Corollary 3.2 is applicable.
Case 2. 0 ≤ r + qτ2 < 1. In this case, we see that

h (n) =
(τ − α) (p− q)

α

n∑

i=0

[r + τ2q]
i

holds. Therefore, we obtain

h (∞) =
(τ − α) (p− q)

α (1− (r + τ2q))
>

1
e
.

We complete the proof by considering (25) and applying Corollary 3.2. ¤
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