• Title/Summary/Keyword: neutral difference equation

Search Result 27, Processing Time 0.021 seconds

CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF SECOND ORDER SELF-ADJOINT NEUTRAL DIFFERENCE EQUATIONS

  • Liu, Yujun;Liu, Zahaoshuang;Zhang, Zhenguo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.237-249
    • /
    • 2004
  • Consider the second order self-adjoint neutral difference equation of form $\Delta(a_n$\mid$\Delta(x_n\;-\;{p_n}{x_{{\tau}_n}}$\mid$^{\alpha}sgn{\Delta}(x_n\;-\;{p_n}{x_{{\tau}_n}}\;+\;f(n,\;{x_{g_n}}\;=\;0$. In this paper, we will give the classification of nonoscillatory solutions of the above equation; and by the fixed point theorem, we present some existence results for some kinds of nonoscillatory solutions of the equation.

PERIODIC SOLUTIONS IN NONLINEAR NEUTRAL DIFFERENCE EQUATIONS WITH FUNCTIONAL DELAY

  • MAROUN MARIETTE R.;RAFFOUL YOUSSEF N.
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.255-268
    • /
    • 2005
  • We use Krasnoselskii's fixed point theorem to show that the nonlinear neutral difference equation with delay x(t + 1) = a(t)x(t) + c(t)${\Delta}$x(t - g(t)) + q(t, x(t), x(t - g(t)) has a periodic solution. To apply Krasnoselskii's fixed point theorem, one would need to construct two mappings; one is contraction and the other is compact. Also, by making use of the variation of parameters techniques we are able, using the contraction mapping principle, to show that the periodic solution is unique.

OSCILLATION OF NONLINEAR SECOND ORDER NEUTRAL DELAY DYNAMIC EQUATIONS ON TIME SCALES

  • Agwo, Hassan A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.299-312
    • /
    • 2008
  • In this paper, we establish some oscillation criteria for nonautonomous second order neutral delay dynamic equations $(x(t){\pm}r(t)x({\tau}(t)))^{{\Delta}{\Delta}}+H(t,\;x(h_1(t)),\;x^{\Delta}(h_2(t)))=0$ on a time scale ${\mathbb{T}}$. Oscillatory behavior of such equations is not studied before. This is a first paper concerning these equations. The results are not only can be applied on neutral differential equations when ${\mathbb{T}}={\mathbb{R}}$, neutral delay difference equations when ${\mathbb{T}}={\mathbb{N}}$ and for neutral delay q-difference equations when ${\mathbb{T}}=q^{\mathbb{N}}$ for q>1, but also improved most previous results. Finally, we give some examples to illustrate our main results. These examples arc [lot discussed before and there is no previous theorems determine the oscillatory behavior of such equations.

OSCILLATION OF SECOND ORDER UNSTABLE NEUTRAL DIFFERENCE EQUATIONS WITH CONTINUOUS ARGUMENTS

  • TIAN YU;ZHANG ZHENGUO;GE WEIGAO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.355-367
    • /
    • 2006
  • In this paper, we consider the oscillation second order unstable neutral difference equations with continuous arguments $\Delta^2_{/tau}(\chi(t)-p\chi(t-\sigma))=f(t,\chi(g(t)))$ and obtain some criteria for the bounded solutions of this equation to be oscillatory.

OSCILLATIONS FOR EVEN-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhou, Zhan;Yu, Jianshe;Lei, Guanglong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.833-842
    • /
    • 2000
  • Consider the even-order neutral difference equation (*) ${\delta}^m(x_n{-}p_ng(x_{n-k}))-q_nh(x_{n-1})=0$, n=0,1,2,... where $\Delta$ is the forward difference operator, m is even, ${-p_n},{q_n}$ are sequences of nonnegative real numbers, k, l are nonnegative integers, g(x), h(x) ${\in}$ C(R, R) with xg(x) > 0 for $x\;{\neq}\;0$. In this paper, we obtain some linearized oscillation theorems of (*) for $p_n\;{\in}\;(-{\infty},0)$ which are discrete results of the open problem by Gyori and Ladas.

OSCILLATION OF SUB LINEAR DIFFERENCE EQUATIONS WITH POSITIVE NEUTRAL TERM

  • LI QIAOLUAN;WANG CHUNGIAO;LI FANG;LIANG HAIYAN;ZHANG ZHENGUO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.305-314
    • /
    • 2006
  • In this paper, we consider the oscillation of first order sublinear difference equation with positive neutral term $\Delta(\chi(n)+p(n)\chi(\tau(n)))+f(n,\chi(g1(n)),\cdots,\chi(gm(n)))=0$. We obtain necessary and sufficient conditions for the solutions of this equation to be oscillatory.

Oscillation of Linear Second Order Delay Dynamic Equations on Time Scales

  • Agwo, Hassan Ahmed
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.425-438
    • /
    • 2007
  • In this paper, we establish some new oscillation criteria for a second-order delay dynamic equation $$u^{{\Delta}{\Delta}}(t)+p(t)u(\tau(t))=0$$ on a time scale $\mathbb{T}$. The results can be applied on differential equations when $\mathbb{T}=\mathbb{R}$, delay difference equations when $\mathbb{T}=\mathbb{N}$ and for delay $q$-difference equations when $\mathbb{T}=q^{\mathbb{N}}$ for q > 1.

  • PDF

Asymptotic Results for a Class of Fourth Order Quasilinear Difference Equations

  • Thandapani, Ethiraju;Pandian, Subbiah;Dhanasekaran, Rajamannar
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.477-488
    • /
    • 2006
  • In this paper, the authors first classify all nonoscillatory solutions of equation (1) $${\Delta}^2|{\Delta}^2{_{y_n}}|^{{\alpha}-1}{\Delta}^2{_{y_n}}+q_n|y_{{\sigma}(n)}|^{{\beta}-1}y_{{\sigma}(n)}=o,\;n{\in}\mathbb{N}$$ into six disjoint classes according to their asymptotic behavior, and then they obtain necessary and sufficient conditions for the existence of solutions in these classes. Examples are inserted to illustrate the results.

  • PDF

Analysis of Nonlinear Behavior in Idea of Physical Exercise with Unification of Mind and Body (심신일여 체육 사상에서의 비선형 거동 해석)

  • Kim, Myung-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.645-652
    • /
    • 2016
  • The basic equation of body and mind that can be represented as body and mind based on love model of Romeo and Juliet is presented in this paper. In order verify validity for physical idea of unification for body and mind when the external force is applied in the basic equation. We display the time series and phase portrait for nonlinear behavior, and this paper confirms the point of difference between body-mind neutral monism and body-mind dualism.