• Title/Summary/Keyword: neuroprotective effects

Search Result 606, Processing Time 0.022 seconds

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

Atractylenoide II Isolated from Atractylodes macrocephala Inhibited Inflammatory Responses in Lipopolysaccharide-induced RAW264.7 Macrophages and BV2 Microglial Cells (백출에서 분리된 Atractylenolide II의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과)

  • Jin, Hong-Guang;Kim, Kwan-Woo;Li, Jing;Im, Hyeri;Lee, Dae Young;Yoon, Dahye;Jeong, Jin Tae;Kim, Geum-Soog;Oh, Hyuncheol;An, Ren-Bo;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.244-254
    • /
    • 2020
  • Atractylodes macrocephala is a perennial herb and is a member of the Compositae family. This plant is known to contain various bioactive constituents indicating anti-inflammatory, neuroprotective, anti-oxidant, immunological enhancement, and gastroprotective effects. In this investigation, we isolated four compounds with similar chemical structures from A. macrocephala, and evaluated their anti-inflammatory effects. Among the four compounds, compound 2(atractylenolide II) showed the second-best inhibitory effect on the lipopolysaccharide(LPS)-induced production of nitric oxide in RAW264.7 macrophages and BV2 microglial cells. Compound 2 also inhibited the LPS-induced the production of prostaglandin E2(PGE2), and the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 proteins in both cells. In addition, compound 2 suppressed the production of pro-inflammatory cytokines including interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by treatment with compound 2. This compound did not induce the expression of heme oxygenase(HO)-1 protein indicating that the anti-inflammatory effect of compound 2 was independent with HO-1 protein. Taken together, these results suggested that atractylenolide II can be a candidate material to treat inflammatory diseases.

Morin Hydrate Inhibits Influenza Virus entry into Host Cells and Has Anti-inflammatory Effect in Influenza-infected Mice

  • Eun-Hye Hong;Jae-Hyoung Song;Seong-Ryeol Kim;Jaewon Cho;Birang Jeong;Heejung Yang;Jae-Hyeon Jeong;Jae-Hee Ahn;Hyunjin Jeong;Seong-Eun Kim;Sun-Young Chang;Hyun-Jeong Ko
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.32.1-32.15
    • /
    • 2020
  • Influenza virus is the major cause of seasonal and pandemic flu. Currently, oseltamivir, a potent and selective inhibitor of neuraminidase of influenza A and B viruses, is the drug of choice for treating patients with influenza virus infection. However, recent emergence of oseltamivir-resistant influenza viruses has limited its efficacy. Morin hydrate (3,5,7,2',4'-pentahydroxyflavone) is a flavonoid isolated from Morus alba L. It has antioxidant, anti-inflammatory, neuroprotective, and anticancer effects partly by the inhibition of the NF-κB signaling pathway. However, its effects on influenza virus have not been studied. We evaluated the antiviral activity of morin hydrate against influenza A/Puerto Rico/8/1934 (A/PR/8; H1N1) and oseltamivir-resistant A/PR/8 influenza viruses in vitro. To determine its mode of action, we carried out time course experiments, and time of addition, hemolysis inhibition, and hemagglutination assays. The effects of the co-administration of morin hydrate and oseltamivir were assessed using the murine model of A/PR/8 infection. We found that morin hydrate reduced hemagglutination by A/PR/8 in vitro. It alleviated the symptoms of A/PR/8-infection, and reduced the levels of pro-inflammatory cytokines and chemokines, such as TNF-α and CCL2, in infected mice. Co-administration of morin hydrate and oseltamivir phosphate reduced the virus titers and attenuated pulmonary inflammation. Our results suggest that morin hydrate exhibits antiviral activity by inhibiting the entry of the virus.

Neuroprotective Effects of Pinelliae Rhizoma Water-Extract by Suppression of Reactive Oxygen Species and Mitochondrial Membrane Potential Loss in a Hypoxic Model of Cultured Rat Cortical Cells. (배양대뇌신경세포 저산소증모델에서 유해산소생성억제 및 사립체막전위 소실방지에 의한 반하(半夏)의 신경세포사 억제 효능)

  • Kwon, Gun-Rok;Moon, Il-Soo;Lee, Won-Chul
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.598-606
    • /
    • 2009
  • Oxidative stress by free radicals is a major cause of neuronal cell death. Excitotoxicity in hypoxia/ischemia causes an increase in reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP), resulting in dysfunction of the mitochondria and cell death. Pinelliae Rhizoma (PR) is a traditional medicine for incipient stroke. We investigated the effects of PR Water-Extract on the modulation of ROS and MMP in a hypoxic model using cultured rat cortical cells. PR Water-Extract was added to the culture medium at various concentrations (0.25${\sim}$5, 5.0 ${\mu}g/ml$) on day in vitro 12(DIV12), given a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 hr), and cell viability was assessed on DIV15 by Lactate Dehydrogenase Assay (LDH assays). PR Water-Extract showed a statistically significant effect on neuroprotection (10${\sim}$15% increase in viability; p<0.01) at 1.0 and 2.5 ${\mu}g/ml$ in normoxia and hypoxia. Measurement of ROS production by $H_2DCF-DA$ stainings showed that PR Water-Extract efficiently reduced the number and intensity of ROS-producing neurons, especially at 1 hr post shock and DIV15. When MMP was measured by JC-1 stainings, PR Water-Extract efficiently maintained high-energy charged mitochondria. These results indicate that PR Water-Extract protects neurons in hypoxia by preventing ROS production and preserving the cellular energy level.

Effects of Rhizoma Gastrodiae on Cultured Mouse Spinal Motor Neurons Damaged by Hydrogen Peroxide (Hydrogen Peroxide에 의하여 손상된 배양 척수운동신경세포에 대한 천마의 영향에 관한 연구)

  • Kim Hyung Su;Lee Yang Suk;Lee Whan Bong;Son Il Hong;Lee Jae Kyoo;Son Young Woo;Lee Jung Hun;Lee Kang Chang;Ryu Myeung Hwan;Song Ho Joan;Seong Kang Kyung;Park Seung Taeck;Lee Kap Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.150-153
    • /
    • 2002
  • To elucidate the toxic effect of oxygen free radicals on cultured mouse spinal motor neurons damaged by hydrogen peroxide(H₂O₂)-induced neurotoxicity, we examined the neurotoxicity induced by oxygen radicals by NR assay when cultured spinal motor neurons were grown in the medium containing various concentrations of H₂O₂ for 6 hours. In addition, neuroprotective effects of herb extracts such Rhizoma Gastrodiae(RG), on H₂O₂-induced neurotoxicity in cultured spinal motor neurons were evaluated after cultured spinal motor neurons were preincubated with various concentrations of herb extract, RG for 2 hours before 50uM H₂O₂ for 6 hours. H₂O₂ decreased remarkably cell viability in dose-and time-dependent manner in these cultures, and also herb extract, RG increased cell viability of spinal motor neurons damaged by H₂O₂ in these cultures. From the above results, it is suggested that H₂O₂ was toxic in cultured spinal motor neurons derived from mouse, and RG was effective in blocking the neurotoxicity induced by oxidative stress in these cultures.

Protective Effect of Ethyl Acetate Fraction from Hibiscus Sabdariffa L. Extract against High Glucose-induced Oxidative Stress (고포도당으로 유도된 산화 스트레스에 대한 로젤 아세트산에틸 분획물의 신경세포 보호효과)

  • Seung, Tae Wan;Park, Sang Hyun;Park, Seon Kyeong;Ha, Jeong Su;Lee, Du Sang;Kang, Jin Yong;Kim, Jong Min;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.284-288
    • /
    • 2016
  • To investigate the physiological effect of Hibiscus sabdariffa, in vitro antioxidant activities and neuroprotective effects against high glucose-induced oxidative stress were examined. The ethyl acetate fraction (EtOAc-Fr) from H. sabdariffa contained high total phenolic contents compared with other fractions but total anthocyanin contents were lower than 80% Ethanol extract showed the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging activity and malondialdehyde inhibitory effect. Furthermore, the EtOAc-Fr decreased the intracellular reactive oxygen species level, and protected the neuron-like PC12 cells from high glucose-induced cytotoxicity. The EtOAc-Fr also presented inhibitory effects against acetylcholinesterase as an acetylcholine hydrolase enzyme. Finally, chlorogenic acids as main phenolics by high performance liquid chromatography analysis.

Cirsium japonicum Extracts Show Antioxidant Activity and PC12 Cell Protection against Oxidative Stress (좁은잎 엉겅퀴 추출물의 산화방지 활성 및 산화적 스트레스에 대한 PC12 세포 보호효과)

  • Jang, Miran;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.172-177
    • /
    • 2016
  • The phenolic compounds, antioxidant activity and neuronal cell protective effect of Cirsium japonicum extract were evaluated in this study. High performance liquid chromatography mass analysis showed that C. japonicum was composed of chlorogenic acid, linarin, and pectolinarin. C. japonicum extract showed its antioxidant activity with half-maximal inhibitory concentrations of 567 and $130{\mu}g/mL$ by DPPH and ABTS radical scavenging activity, respectively. The total antioxidant capacities of C. japonicum via DPPH, ABTS, and FRAP assays were 11.32, 100.15, and $12.76{\mu}g/mL$ trolox equivalents, respectively. In addition, the neuroprotective effect of C. japonicum extract was investigated by measuring cell viability via MTT, LDH and DCF-DA assay using $H_2O_2-damaged$ PC12 cells. C. japonicum extract showed neuronal cell protective effects in a dose-dependent manner. These results indicated that C. japonicum extract has potent antioxidant and neuronal protective effects. Therefore, C. japonicum can be regarded as an effective and safe functional food resource as natural antioxidants, and may decrease the risk of neurodegenerative disorders.

Ethnobotany, Phytochemistry, Pharmacology of the Korean Campanulaceae: A Comprehensive Review (한국산 초롱꽃과(Campanulaceae)의 민속식물, 화학성분, 약리작용에 대한 종합적 고찰)

  • Kim, Hyun-Jun;Kang, Shin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.240-264
    • /
    • 2017
  • The present study was carried out to identify traditional konwledges on Korean Campanulaceae plants and conduct a comprehensive review of them through analyzing phytochemistry and pharmacology of Korean Campanulaceae plants. According to the literature study, the ethnobotanical plants of Korean Campanulacae consisted of a total 18 taxa. Of them, 12 taxa including Platycodon grandiflorus, Adenophora triphylla var. japonica, Codonopsis lanceolata and others have been used as ethnomedicinal plants. These plants have been used for the treatment of 49 diseases such as cold, asthma and postnatal care. Phytochemical studies have identified the constituents present from Korean Campanulaceae (Adenophora, Codonopsis, Platycodon, Campanula and Asyneuma). A wide range of chemical compounds comprised 109 triterpenes, 8 sterols, 4 polyacetylenes, 21 alkaloids, 14 flavonoids, 14 phenolic acids, 11 phenolic glycosides, 8 phenylpropanoids and 22 other compounds. Pharmacological studies of these compounds have demonstrated immuno-stimulating, anti-inflammatory, anti-asthmatic, apophlegmatic and anti-allergic effects. They have also shown antioxidant, estrogenic, anti-diabetic, hepatoprotective, neuroprotective, antinociception and anti-tumor activities, as well as anti-obesity and cardiovascular effects. In light of traditional knowledge and phytochemical and pharmacological studies summarized, uses of Korean Campanulaceae based on traditional knowledge (for the treatment diseases and conditions of respiratory, pregnancy, childbirth, puerperium, genitourinary, circulatory, musculoskeletal and other systems) have been supported by phytochemical and pharmacological studies.

Effects of Angelica gigas Nakai herbal acupuncture into Hyolhae(SP10) of brain ischemic injury induced by Intraluminal Filament insertion in the rats (당귀약침(當歸藥鍼)의 혈해(血海) 자입(刺入)이 Intraluminal Filament 삽입술(揷入術)에 의(依)해 유발(誘發)된 백서(白鼠)의 허혈성(虛血性) 뇌손상(腦損傷)에 미치는 영향(影響))

  • Han, Sang-gyun;Lee, Byung-ryul
    • Journal of Acupuncture Research
    • /
    • v.21 no.2
    • /
    • pp.1-20
    • /
    • 2004
  • Objective : The aim of this study was to investigate effects of Angelica gigas Nakai(AGN) on the ischemic injury by intraluminal filament insertion in the rats. Methods : The ischemia was induced by intraluminal filament insertion into middle cerebral artery. AGN herbal acupuncture into SP10 was carried out during 3 weeks after ischemic injury. Eight-arm radial maze was designed for the behavioral task. AGN herbal acupuncture showed neuroprotective agents in cresyl violet, acetylcholinesterase(AchE), choline acetyltransferase(ChAT) and nerve growth factor(NGF)-stain. Then check the effect of regional cerebral blood flow(rCBF) according to AGN herbal acupuncture in rats. Results : The errors in the eight-arm radial maze task were significantly decreased in normal group compared with control group on 1~6days, AGN2(0.02g/kg) herbal acupuncture group on 1~5days, AGN3(0.1g/kg) on 1~3days, AGN4(0.5g/kg) on 1, 3~6days. The rate of correct choice was significantly increased in AGN1(0.01g/kg) and AGN4 herbal acupuncture groups. The density of neurons in the hippocampal CA1 was the most increased in normal group and AGN1, AGN3, AGN4 herbal acupuncture groups compared with control group. The density of AchE in the hippocampal CA1 had a tendency to increase in all the groups when they were compared with control group, but not significant. The density of ChAT in the hippocampal CA1 was significantly increased in normal group and AGN1, AGN4 herbal acupuncture groups compared with control group. The density of NGF in the hippocampal CA1 was significantly increased AGN4 herbal acupuncture group compared with control group. The rCBF was significantly increased in AGN1, AGN3 and AGN4 herbal acupuncture groups without the change of blood pressure. Conclusions : These results suggest that AGN herbal acupuncture can be used for controlling stroke in early stage as herbal medication.

  • PDF

Effects of Water-Extracts of Bambusae concretio silicae(BCS, 天竺黃) on the Expression of Neurotransmitter Receptors (천죽황(Bambusae concretio silicae, 天竺黃) 물추출물이 신경전달물질 수용체의 표현에 미치는 영향)

  • Yoon, Jae-Hong;Kim, Kyung-Min;Kim, Kyung-Hun;Shin, Gil-Cho;Jeong, Seung-Hyun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.22 no.2
    • /
    • pp.163-176
    • /
    • 2011
  • Objectives : BCS(Bambusae concretio silicae) is used as a traditional medicine in Korea for the incipient stroke. Recent reports indicated that BCS has a neuroprotective effect by anti-convulsion effect. However, it's mechanism is not well studied. The purpose of this study was to investigate into the molecular mechanism of BCS for neuroprotection in normoxia of cultured rat hippocampal neurons. Methods : BCS (1.0, 2.5, 5.0, and $10.0\;{\mu}g/m{\ell}$) was added to culture media (Neurobasal supplemented with B27) on DIV 0, given a normoxia, and the cell viability was measured by typical phase-contrast images of the cultures with 1.0, 2.5, 5.0, and $10.0\;{\mu}g/m{\ell}$ on DIV 21. Effects of BCS on the expression of various synaptic proteins ($GABA_B$ R1, $GABA_B$ R2, GlyR, PSD95) were observed by immunocytochemistry showing on DIV 3, 7 and 21. Results : Typical phase-contrast images of the cultures indicated that BCS has a protective effect of rat hippocampal cells in normoxia. The BCS upregulated $GABA_B$ R1 after normoxia on DIV 7, $GABA_A$ ${\beta}2/3$ on DIV 21 and $GABA_B$ R2 on DIV 21. And the BCS downregulated PSD95 after normoxia on DIV 7. Conclusions : The present study showed evidence for the efficacy of BCS in Typical phase-contrast images, upregulation of inhibitory neurotransmitter receptors($GABA_B$ R1) and downregulation of PSD95 which eventually protected neuronal cell death in normoxia.