Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.5.598

Neuroprotective Effects of Pinelliae Rhizoma Water-Extract by Suppression of Reactive Oxygen Species and Mitochondrial Membrane Potential Loss in a Hypoxic Model of Cultured Rat Cortical Cells.  

Kwon, Gun-Rok (Dept. of Oriental Medicine)
Moon, Il-Soo (Department of Anatomy, Dongguk University)
Lee, Won-Chul (Pusan National University School of Oriental Medicine)
Publication Information
Journal of Life Science / v.19, no.5, 2009 , pp. 598-606 More about this Journal
Abstract
Oxidative stress by free radicals is a major cause of neuronal cell death. Excitotoxicity in hypoxia/ischemia causes an increase in reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP), resulting in dysfunction of the mitochondria and cell death. Pinelliae Rhizoma (PR) is a traditional medicine for incipient stroke. We investigated the effects of PR Water-Extract on the modulation of ROS and MMP in a hypoxic model using cultured rat cortical cells. PR Water-Extract was added to the culture medium at various concentrations (0.25${\sim}$5, 5.0 ${\mu}g/ml$) on day in vitro 12(DIV12), given a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 hr), and cell viability was assessed on DIV15 by Lactate Dehydrogenase Assay (LDH assays). PR Water-Extract showed a statistically significant effect on neuroprotection (10${\sim}$15% increase in viability; p<0.01) at 1.0 and 2.5 ${\mu}g/ml$ in normoxia and hypoxia. Measurement of ROS production by $H_2DCF-DA$ stainings showed that PR Water-Extract efficiently reduced the number and intensity of ROS-producing neurons, especially at 1 hr post shock and DIV15. When MMP was measured by JC-1 stainings, PR Water-Extract efficiently maintained high-energy charged mitochondria. These results indicate that PR Water-Extract protects neurons in hypoxia by preventing ROS production and preserving the cellular energy level.
Keywords
Cortical cell culture; hypoxia; MMP; Pinelliae Rhizoma; ROS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lemasters, J. J., T. Qian, C. A. Bradham, D. A. Brenner, W. E. Cascio, L. C. Trost, Y. Nishimura, A. L. Nieminen, and B. Herman. 1999. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. Bioenerg. Biomembr. 31, 305-319   DOI   ScienceOn
2 Lobner, D. 2000. Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis. J. Neurosci. Methods 96, 147-152   DOI   ScienceOn
3 Nieminen, A. L. 2003. Apoptosis and necrosis in health and disease: role of mitochondria. Int. Rev. Cytol. 224, 29-55   DOI   ScienceOn
4 Oshio, H., M. Tsukui, and T. Matsuoka. 1978. Isolation of l-ephedrine from 'pinelliae tuber'. Chem. Pharm. Bull. (Tokyo) 26, 2096-2097   DOI   ScienceOn
5 Rego, A. C. and C. R. Oliveira. 2003. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. 28, 1563-1574   DOI   ScienceOn
6 Schild, L., J. Huppelsberg, S. Kahlert, G. Keilhoff, and G. Reiser. 2003. Brain mitochondria are primed by moderate Ca2+ rise upon hypoxia;reoxygenation for functional breakdown and morphological disintegration. J. Biol. Chem. 278, 25454-25460   DOI   ScienceOn
7 Zamzami, N., T. Hirsch, B. Dallaporta, P. X. Petit, and G. Kroemer. 1997. Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J. Bioenerg. Biomembr. 29, 185-193   DOI   ScienceOn
8 Zimmermann, K. C. and D. R. Green. 2001. How cells die: Apoptosis pathways. J. Allergy Clin. Immunol. 108, 99-103   DOI   ScienceOn
9 Hansen, A. 1977. Extracellular potassium concentration in juvenile and adult brain cortex during anoxia. Acta Physiol. Scand. 99, 412-420   DOI   ScienceOn
10 Heales, S. J., J. P. Bolanos, V. C. Stewart, P. S. Brookes, J. M. Land, and J. B. Clark. 1999. Nitric oxide, mitochondria and neurological disease. Biochim. Biophys. Acta. 1410, 215-228   DOI   ScienceOn
11 Hoe, J. 1999. Dong-Eui-Bo-Gam. pp. 965, 961, 1955, Byuinmoonhwasa, Seoul
12 Ji, H. J. and S. I. Lee. 2007. Hanyack-Gyugyuk-Juhea. pp. 329, Korean index Co., Seoul
13 Kerr, J. F. R., A. H. Wyllie, and A. R. Currie. 1972. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br. J. Cancer 26, 239-245   DOI   ScienceOn
14 Kim, H. C. 2001. Pharmacology of Korea. pp. 346-347, Jipmoondang, Seoul.
15 Kroemer, G., B. Dallaporta and M. Resche-Rigon. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619-642   DOI   ScienceOn
16 Kirino, T. 1982. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239, 57-69   DOI   ScienceOn
17 Kirino, T., A. Tamura, and K. Sano. 1985. Selective vulnerability of the hippocampus to ischemia-reversible and irreversible types of ischemic cell damage. Prog. Brain Res. 63, 39-58   DOI
18 Kirkeby, O. J., S. Kutzsche, C. Risoe, and I. R. Rise. 2000. Cerebral nitric oxide concentration and microcirculation during hypercapnia, hypoxia, and high intracranial pressure in pigs. J. Clin. Neurosci. 7, 531-538   DOI   ScienceOn
19 Beltran, B., A. Mathur, M. R. Duchen, J. D. Erusalimsky, and S. Moncadan. 2000. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. USA 97, 14602-14607   DOI   ScienceOn
20 Brewer, G. J., J. R. Torricelli, E. K. Evege, and P. J. Price. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-676   DOI   ScienceOn
21 Evenson, D. P., Z. Darzynkiewicz, and M. R. Melamed. 1982. Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. J. Histochem. Cytochem. 30, 279-280   DOI   ScienceOn
22 Fleury, C., B. Mignotte, and J. L. Vayssiere. 2002. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 84, 131-141   DOI   ScienceOn
23 Friedman, J. E. and G. G. Haddad. 1993. Major differences in Ca2+, response to anoxia between neonatal and adult rat CA1 neurons: role of Ca2+ and Na+. J. Neurosci. 13, 63-72
24 Halliwell, B. and J. M. Gutteridge. 1985. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 8, 89-193   DOI   ScienceOn
25 Fubini, B. and A. Hubbard. 2003. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34, 1507-1516   DOI   ScienceOn
26 Fuh, Jr., S. J. Wang, E. B. Larson, and H. C. Liu. 1996. Prevalence of stroke in kinmen. Stroke. 27, 1338-1341   DOI   ScienceOn
27 Halestrap, A. P., P. M. Kerr, S. Javadov, and K. Y. Woodfield. 1998. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta. 1366, 79-94   DOI   ScienceOn
28 Arechabala, B., C. Coiffard, P. Rivalland, L. J. Coiffard, and Y. de Roeck-Holtzhauer. 1999. Comparison of cytotoxicity of various surfactants tested on normal human fibroblast cultures using the neutral red test, MTT assay and LDH release. J. Appl. Toxicol. 19, 163-165   DOI   ScienceOn
29 Andreadis, A. A., S. L. Hazen, S. A. A. Comhair, and S. C. Erzurum. 2003. Oxidative and nitrosative events in asthma. Free Radic. Biol. Med. 35, 213-225   DOI   ScienceOn