• Title/Summary/Keyword: neuronal cell

Search Result 1,057, Processing Time 0.026 seconds

Neuroprotective Effects of Acorus gramineus Soland. on Oxygen-Glucose Deprivation/Reoxygenation-Induced β-amyloid Production in SH-SY5Y Neuroblastoma Cells (허혈-재관류 유도 SH-SY5Y 모델에서 베타아밀로이드 생성에 미치는 석창포 추출물에 대한 뇌 신경보호 효과)

  • Su Young Shin;Jin-Woo Jeong;Chul Hwan Kim;Eun Jung Ahn;Seung Young Lee;Chang-Min Lee;Kyung-Min Choi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.58-58
    • /
    • 2021
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced β-amyloid (Aβ) generation and development of AD is not yet known. In this study, we investigated the protective effects of Acorus gramineus Soland. (AGS) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced A β production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with AGS significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) and elevation of levels of malondialdehyde, nitrite (NO), prostaglandin E2 (PGE2), cytokines (TNF-α, IL-1β and IL-6) and glutathione, as well as superoxide dismutase activity. AGS also reduced OGD/R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, AGS reduced OGD/R-induced Aβ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that AGS may prevent neuronal cell damage from OGD/R-induced toxicity.

  • PDF

Safflower seed oil, a rich source of linoleic acid, stimulates hypothalamic neurogenesis in vivo

  • Mehrzad Jafari Barmak;Ebrahim Nouri;Maryam Hashemi Shahraki;Ghasem Ghalamfarsa;Kazem Zibara;Hamdallah Delaviz;Amir Ghanbari
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.219-227
    • /
    • 2023
  • Adult neurogenesis has been reported in the hypothalamus, subventricular zone and subgranular zone in the hippocamp. Recent studies indicated that new cells in the hypothalamus are affected by diet. We previously showed beneficial effects of safflower seed oil (SSO), a rich source of linoleic acid (LA; 74%), on proliferation and differentiation of neural stem cells (NSCs) in vitro. In this study, the effect of SSO on hypothalamic neurogenesis was investigated in vivo, in comparison to synthetic LA. Adult mice were treated with SSO (400 mg/kg) and pure synthetic LA (300 mg/kg), at similar concentrations of LA, for 8 weeks and then hypothalamic NSCs were cultured and subsequently used for Neurosphere-forming assay. In addition, serum levels of brain-derived neurotrophic factor (BNDF) were measured using enzyme-linked immunosorbent assay. Administration of SSO for 8 weeks in adult mice promoted the proliferation of NSCs isolated from SSO-treated mice. Immunofluorescence staining of the hypothalamus showed that the frequency of astrocytes (glial fibrillary acidic protein+ cells) are not affected by LA or SSO. However, the frequency of immature (doublecortin+ cells) and mature (neuronal nuclei+ cells) neurons significantly increased in LA- and SSO-treated mice, compared to vehicle. Furthermore, both LA and SSO caused a significant increase in the serum levels of BDNF. Importantly, SSO acted more potently than LA in all experiments. The presence of other fatty acids in SSO, such as oleic acid and palmitic acid, suggests that they could be responsible for SSO positive effect on hypothalamic proliferation and neurogenesis, compared to synthetic LA at similar concentrations.

Investigation of Neuroprotective Efficacy of Dexpanthenol in an Experimental Head Injury Model

  • Durmus E. Karatoprak;Recai Engin;Sarp Sahin;Ismail Iclek;Mehmet A. Durak
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.5
    • /
    • pp.521-530
    • /
    • 2024
  • Objective : Dexpanthenol (DXP), which has known neuroprotective effects, has been shown to be beneficial in various experimental models and ischaemic diseases. The aim of this study was to investigate the possible neuroprotective effects of DXP in a traumatic brain injury (TBI) model. Methods : Thirty-six Wistar-Albino female rats, approximately 6 months old, weighing 220-285 g were used. All rats were subjected to closed head trauma by dropping a weight of 350 g on the parietal region from a height of 50 cm at an angle of 180 degrees in the prepared head trauma model setup. The rats were divided into four groups as control (group 1), trauma (group 2), trauma + DXP (group 3), and DXP (group 4). In group 3, DXP was administered intraperitoneally at a dose of 500 mg/kg for six times at 30 minutes, 6, 12, 24, 36, and 48 hours. In group 4, DXP was administered intraperitoneally simultaneously with group 3 without causing head trauma. Blood samples were taken from all rats 72 hours later for biochemical examination. After blood samples were taken, rats were decapitated under general anaesthesia. Cerebral tissue samples were taken from decapitated rats for immunohistochemical and histopathological examination. Results : Cytokine markers were found to be increased in posttraumatic brain tissue. Malondialdehyde and glutathione reductase levels were lower in group 3 compared to group 2. In addition, superoxide dismutase, glutathione peroxidase and catalase levels were significantly higher in group 3 compared to group 2. In histological evaluation, congestion in the piamater layer, cell infiltration, vascular congestion, hemorrhage and neuronal degeneration were significantly decreased in group 3 compared to group 2. DXP seems to be beneficial in neurological recovery in terms of histological and oxidative changes after head trauma in rats. Conclusion : DXP should be further evaluated for its possible therapeutic effect in TBI.

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

Effects of Ginseng and Its Saponins on Experimental Amnesia in Mice and on Cell Cultures of Neurons (인삼 및 인삼 사포닌이 쥐의 건망증 및 신경세포배양에 미치는 영향)

  • Saito Hiroshi;Nishiyama Nobuyoshi;Iwai Akihiko;Kawajiri Shinichi;Himi Toshiyuki;Sakai Toshimi;Fukunaka Chizu
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.92-98
    • /
    • 1988
  • The present study was performed to find the effects of ginseng and its saponins. which is written in Chung Yao Ta Tsu Tien as anti-amnesia in its chief indication. on experimental amnesia in mice. In the step through test. ginsenoside $Rb_1\;(GRb_1)\;and\;GRg_1$ facilitated the registration of memory and antagonized the electroconvulsive shock (ECS)-induced inhibition of the retention of memory. Moreover. $GRg_1$ antagonized the EtOH-induced inhibition of the retrieval of memory. In the step down test. $GRb_1\;GRb_2\;and\;GRg_1$ antagonized the ECS-induced inhibition of the retention of memory. Moreover. $GRg_1$ antagonized the EtOH-induced inhibition of the retrieval of memory and facilitated the acquisition of short term memory. In the shuttle hox and lever press tests. they have no effects on acquisition and retrieval of memory. except $GRb_1\;GRb_1$ depressed the retrieval of conditioned avoidance response in the shuttle box test. After the end of four tests. the effects of these orally administered drugs on sedative. analgesic. antipyretic and anticonvulsant actions. and on spontaneous and exploratory movements were tested in doses of less than 500mg/kg. but they had none of these effects. Present study may indicate that $GRg_1$ had effects on the retrieval of memory and on the acquisition process of learning response. The recent research on the role of NGF for the survival. regeneration and regulation of brain in adult animals. indicated the importance of NGF on dementia and amnesia. During our research on the specificity of the neurite out growth induced by NGF. we found that the effect of NGF was potentiated by $GRb_1$ in organ cultures of chick embryonic dorsal root ganglia. Then. the effect of $GRb_1$ on neuronal cell survivalin cell culture system was studied. $GRb_1$ potentiated the NGF-mediated increase of neurofilaments in cell cultures of chick embryonic sensory and sympathetic neurons. NGF with $GRb_1$ also showed a tendency to increase the number of surviving neurons of rat embryonic cerebral cortex. NGF increased choline acetyl transferase activity in cell cultures of rat embryonic septum area neurons. but $GRb_1$ did not potentiate NGF activity in cell cultures of rat embryonic septum area neurons. Present study may indicate that $GRb_1$ plays an important role for the survival or regeneration of neurons in the brain.

  • PDF

Human Embryonic Stem Cells Co-Transfected with Tyrosine Hydroxylase and GTP Cyclohydrolase I Relieve Symptomatic Motor Behavior in a Rat Model of Parkinson′s Disease

  • Kil, Kwang-Soo;Lee, Chang-Hyun;Shin, Hyun-Ah;Cho, Hwang-Yoon;Yoon, Ji-Yeon;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, Se-Pill
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.101-101
    • /
    • 2003
  • Main strategy for a treatment of Parkinson's disease (PD), due to a progressive degeneration of dopaminergic neurons, is a pharmaceutical supplement of dopamine derivatives or ceil replacement therapy. Both of these protocols have pros and cons; former exhibiting a dramatic relief but causing a severe side effects on long-term prescription and latter also having a proven effectiveness but having availability and ethical problems Embryonic stem (ES) cells have several characteristics suitable for this purpose. To investigate a possibility of using ES cells as a carrier of therapeutic gene(s), human ES (hES, MB03) cells were transfected with cDNAs coding for tyrosine hydroxylase (TH) in pcDNA3.1 (+) and the transfectants were selected using neomycin (250 $\mu /ml$). Expression of TH being confirmed, two of the positive clone (MBTH2 & 8) were second transfected with GTP cyclohydrolase 1 (GTPCH 1) in pcDNA3.1 (+)-hyg followed by selection with hygromycin-B (150 $\mu /ml$) and RT-PCR confirmation. By immune-cytochemistry, these genetically modified but undifferentiated dual drug-resistant cells were found to express few of the neuronal markers, such as NF200, $\beta$-tubulin, and MAP2 as well as astroglial marker GFAP. This results suggest that over-production of BH4 by ectopically expressed GTPCH I may be involved in the induction of those markers. Transplantation of the cells into striatum of 6-OHDA- denervated PD animal model relieved symptomatic rotational behaviors of the animals. Immunohistochemical analyses showed the presence of human cells within the striatum of the recipients. These results suggest a possibility of using hES cells as a carrier of therapeutic gene(s).

  • PDF

Ultrastructural Localization of ZnT3 and Zinc Ions in the Mouse Choroid Plexus (생쥐 맥락얼기에 분포하는 ZnT3 및 zinc 이온의 조직화학적 동정)

  • Kim, Sung-Joo;Kim, Yong-Kuk;Sun, Yuan-Jie;Kim, Soo-Jin;Jeong, Young-Gil;Yu, Yun-Cho;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2002
  • We have detected the murine zinc transporter, ZnT3, and zinc ions in the mouse choroid plexus by immunocytochemistry (ICC) and zinc selenium autometallography ($ZnSe^{AMG}$), respectively. BALB/c mice served as experimental animals. Routine floating ABC immunocytochemical procedures were used for the ZnT3 immunocytochemistry, and the mice were injected intraperitoneally (i.p.) with sodium selenide (10 mg/kg) for the zinc selenium autometallography. The choroid plexus showed weak immunoreactivity (Ir) for ZnT3. At high magnification, ZnT3-Ir was seen to be located in the choroid epithelium and the connective tissue of the capillaries. At the EM level, a high electron density of ZnT3-immunoreactivity was restricted to vesicle membranes as well as microvilli in the apical membrane. In contrast, immunostaining of ZnT3 was completely absent in the basolateral plasma membrane and other cell organelles. After silver enhancement, fine $ZnSe^{AMG}$ grains were observed in both the epithelial and endothelial cells of the choroid plexus. Few $ZnSe^{AMG}$ grains present in the cell bodies of the choroid epithelial cells were located in multivesicular bodies. It is striking that very many $ZnSe^{AMG}$ grains were observed in the endothelial cells of the capillaries. These findings establish the choroid plexus as a non-neuronal pool of zinc ions in the brain, although the functional significance of this pool is not clear. The choroid epithelium, however, may play an important role in the transportation of zinc between the CSF and brain tissue.

Enhanced Expression of Phospholipase C-$\gamma$1 in Regenerating Murine Neuronal Cells by Pulsing Electromagnetic Field (흰쥐에서 편측 반회후두신경 재지배 후 Phopholipase C-$\gamma$1(PLC-$\gamma$1)의 발현과 후두기능회복과의 관계)

  • 정성민;신혜정;김성숙;김문정;윤선옥;박수경;신유리;김진경
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.12 no.2
    • /
    • pp.126-132
    • /
    • 2001
  • Background and Objectives : Signal traduction through phospholipase C(PLC) participate in the regulation of cell growth and differentiation. Growth factors bind to their receptors and thereby induce tyrosine phophorylation of the phospholipase C-${\gamma}$1(PLC-${\gamma}$1). PLC-${\gamma}$1 is a substrate for several receptor tyrosine kinases and its catalytic activity is increased by tyrosine phosphorylation. Tyrosine kinase phosphorylation of PLC-${\gamma}$1 stimulates PLC activation and cell proliferation. However the signal transduction pathway and the significance of PLC in injured recurrent laryngeal nerve regeneration is unknown. Therefore after we obtained fuctionally recovered rats using PEMF in this study, we attempt to provide some evidence that PLC plays a role in nerve regeneration itself and regeneration related to PEMF through the analysis of the difference between fucntional recovery group and non-recovery group in the recurrent laryngeal nerve. Materials and Method : Using 32 healthy male Sprague-Dawley rats, transections and primary anastomosis were performed on their left recurrent laryngeal nerves. Rats were then randomly assigned to 2 groups. The experimental group(n=16) received PEMS by placing them in custom cages equipped with Helm-holz coils(3hr/day, 5days/wk, for 12wk). The control group(n=16) were handled the same way as the experimental group, except that they did not receive PEMS. Laryngo-videoendoscopy was performed before and after surgery and followed up weekly. Laryngeal EMG was obtained in both PCA and TA muscles. Immunohistochemisty staining and Western blotting analysis using monoclonal antibody was performed to detect PLC-${\gamma}$1 in recurrent laryngeal nerve and nodose ganglion. Results : 10 rats(71%) in experimental group and 4 rats(38%) in the control group showed recovery of vocal fold motion. Functionally-recoverd rats show PLC-${\gamma}$1 positive cells in neuron and ganglion cells after 12 weeks from nerve injury. Conclusion : This study shows that PLC1-${\gamma}$ involved in singnal trasduction pathway in functinal recovery of injured recurrent laryngeal nerve and PEMF enhance the functional recovery by effect on this molecule.

  • PDF

Blood-neural Barrier: Intercellular Communication at Glio-Vascular Interface

  • Kim, Jeong-Hun;Kim, Jin-Hyoung;Park, Jeong-Ae;Lee, Sae-Won;Kim, Woo-Jean;Yu, Young-Suk;Kim, Kyu-Won
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.339-345
    • /
    • 2006
  • The blood-neural barrier (BNB), including blood-brain barrier (BBB) and blood-retinal barrier (BRB), is an endothelial barrier constructed by an extensive network of endothelial cells, astrocytes and neurons to form functional 'neurovascular units', which has an important role in maintaining a precisely regulated microenvironment for reliable neuronal activity. Although failure of the BNB may be a precipitating event or a consequence, the breakdown of BNB is closely related with the development and progression of CNS diseases. Therefore, BNB is most essential in the regulation of microenvironment of the CNS. The BNB is a selective diffusion barrier characterized by tight junctions between endothelial cells, lack of fenestrations, and specific BNB transporters. The BNB have been shown to be astrocyte dependent, for it is formed by the CNS capillary endothelial cells, surrounded by astrocytic end-foot processes. Given the anatomical associations with endothelial cells, it could be supposed that astrocytes play a role in the development, maintenance, and breakdown of the BNB. Therefore, astrocytes-endothelial cells interaction influences the BNB in both physiological and pathological conditions. If we better understand mutual interactions between astrocytes and endothelial cells, in the near future, we could provide a critical solution to the BNB problems and create new opportunities for future success of treating CNS diseases. Here, we focused astrocyte-endothelial cell interaction in the formation and function of the BNB.

Immunohistochemical Studies of Human Ribosomal Protein S3 (rpS3)

  • Choi, Soo-Hyun;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Kim, Dae-Won;Won, Moo-Ho;Kang, Tae-Cheon;Park, Jin-Seu;Eum, Won-Sik;Kim, Joon;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.208-215
    • /
    • 2006
  • The human ribosomal protein S3 (rpS3) was expressed in E. coli using the pET-I5b vector and the monoclonal antibodies (mAbs) were produced and characterized. A total of five hybridoma cell lines were established and the antibodies recognized a single band of molecular weight of 33 kDa on immunoblot with purified rpS3. When the purified rpS3 was incubated with the mAbs, the UV endonuclease activity of rpS3 was inhibited up to a maximum of 49%. The binding affinity of mAbs to rpS3 determined by using a biosensor technology showed that they have similar binding affinities. Using the anti-rpS3 antibodies as probes, we investigated the cross-reactivities of various other mammalian brain tissues and cell lines, including human. The immunoreactive bands on Western blots appeared to be the same molecular mass of 33 kDa in all animal species tested. They also appear to be extensively cross-reactive among different organs in rat. These results demonstrated that only one type of immunologically similar rpS3 protein is present in all of the mammalian brain tissues including human. Furthermore, these antibodies were successfully applied in immunohistochemistry in order to detect rpS3 in the gerbil brain tissues. Among the various regions in the brain tissues, the rpS3 positive neurons were predominantly observed in the ependymal cells, hippocampus and substantia nigra pars compacta. The different distributions of rpS3 in brain tissues reply that rpS3 protein may play an important second function in the neuronal cells.