허혈-재관류 유도 SH-SY5Y 모델에서 베타아밀로이드 생성에 미치는 석창포 추출물에 대한 뇌 신경보호 효과

신수영, 정진우, 김철환, 안은정, 이승영, 이창민, 최경민* 국립낙동강생물자원관, 연구원

Neuroprotective Effects of Acorus gramineus Soland. on Oxygen-Glucose Deprivation/Reoxygenation-Induced β-amyloid Production in SH-SY5Y Neuroblastoma Cells

Su Young Shin, Jin-Woo Jeong, Chul Hwan Kim, Eun Jung Ahn, Seung Young Lee, Chang-Min Lee and Kyung-Min Choi*
Researcher, Nakdonggang National Institute of Biological Resources, Korea

Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced β-amyloid (A β) generation and development of AD is not yet known. In this study, we investigated the protective effects of Acorus gramineus Soland. (AGS) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced A β production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with AGS significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) and elevation of levels of malondialdehyde, nitrite (NO), prostaglandin E2 (PGE2), cytokines (TNF- α, IL-1 β and IL-6) and glutathione, as well as superoxide dismutase activity. AGS also reduced OGD/R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, AGS reduced OGD/R-induced $\mathrm{A} \beta$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that AGS may prevent neuronal cell damage from OGD/R-induced toxicity.

Key words: Acorus gramineus Soland., Oxygen-glucose deprivation/reoxygenation, reactive oxygen species, β-amyloid, SH-SY5Y cells
[본 논문은 환경부의 재원으로 국립낙동강생물자원관(NNIBR2021021010)의 지원을 받아 수행된 연구 이며, 이에 감사드립니다.]
*(Corresponding author) kyungmc69@nnibr.re.kr, Tel: +82-54-530-0805

