• Title/Summary/Keyword: neuroblastoma cells

Search Result 277, Processing Time 0.043 seconds

The antioxidative and neuroprotective effects of Bombusae concretio Salicea and phenolic compounds on neuronal cells (신경세포에서 천축황(天竺黃)과 페놀성 물질의 항산화 및 신경보호 효과)

  • Seo, Young-Jun;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.219-225
    • /
    • 2000
  • 산화적인 스트레스가 여러가지 신경 및 비신경계에서의 병리원인으로 알려져 있다. 퇴행성 뇌질환에 대한 예방과 치료에는 항산화 방어기술이 주요대상이며 스테로이드 분자중에서 estrogen만이 산화적인 원인에 의한 신경세포사를 방어하는데 특이적인 효과를 가지고 있다. 본 연구는 천축황(天竺黃)의 항산화적 뇌신경 보호기전을 연구하는 것으로 신경세포주, 뇌세포막, 이의 산화적 정량실험법을 사용하여 천축황(天竺黃)이 갖는 항산화 및 신경보호활성이 소수성 페놀(phenolic molecules)성 물질과 유사함을 밝히게 되었다. 즉, 페놀성 물질로서 2,4,6-trimethylphenol, N-acetylserotonin, 및 5-hydroxyindole와 유사한 뇌신경 보호활성을 나타내었으며 천축황(天竺黃)은 생쥐의 N2a cell과 사람 SK-N-MC neuroblastoma cell에서 산화적인 글루탐산 독성에 대하여 보호를 하였다. 천축황(天竺黃)의 산화적 글루탐산 독성에 대한 보호활성은 과산화수소에 대한 것과 유사하였다. 이러한 항산화 활성은 $20\;{\mu}g/ml$에서, LDL의 산화적 보호 활성은 $5\;{\mu}g/ml$농도에서 발휘되었다 (최대활성은 $16\;{\mu}g/ml$). 이러한 결과는 천축황(天竺黃)이 노인성 치매에 보호효과가 있음을 시사하였다.

  • PDF

Experimental Study on the Effects of Bohyulanshin-tang on brain-derived neurotophic factor expression in SK-N-SH cell line (보혈안신탕(補血安神湯)이 SK-N-SH cell line의 brain-derived neurotophic factor 발현에 미치는 영향)

  • Baek, Hyun;Kim, Jang-Hyun;Chang, Gyu-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.139-145
    • /
    • 2005
  • This study was performed to investigate the effect of Bohyulanshin-tang on brain-derived neurotophic factor(BDNF) expression in SK-N-SH (immortalized human neuroblastoma) cell line. MTT-based cytotoxicity assay revealed that cells of 0.1 mg/ml group and 1 mg/ml group significantly increased compared with Control group. Westren blotting and RT-PCR analysis showed that Bohyulanshin-tang significantly increased BDNF mRNA expression of 0.1 mg/ml group and 1 mg/ml group compared with Control group. Another analysis revealed that Bohyulanshin-tang significantly increased BDNF expression of 0.1 mg/ml group and 1 mg/ml group compared with Control group. These results showed that cell-protective abilities and cell-proliferating effects of Bohyulanshin-tang approached that of Fluoxetine.

Effects of MeOH Extract from Stem Bark of Plantocracy strobilacea on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (화향수(化香樹) 수피(樹皮)의 메탄올 추출물이 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Jiang, Gui Bao;Leem, Jae Yoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Alzheimer's disease (AD), one of the most common forms of dementia, is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid ($A{\beta}$) peptides of 40-42 residues, which are generated by processing of amyloid precursor protein (APP). $A{\beta}$ has been believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. Here, we show that MeOH extract from stem bark of Platycarya strobilacea Sieb. et. Zucc. (PSM) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that PSM may regulate the processing of APP and increase the sAPP${\alpha}$. PSM does not change the protein level of presenilin and nicastrin, however, it reduces the protein expression level of BACE1. In addition, PSM reduces the secretion level of $A{\beta}42$ and $A{\beta}40$ from the cell line without toxicity. We suggest that Platycarya strobilacea may be useful as a herbal medicine to treat Alzheimer's disease.

A Toxicogenomic Study to Assess Methylmercury-induced Neurotoxicity

  • Kim, Youn-Jung;Yun, Hye-Jung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.177-177
    • /
    • 2003
  • Methylmercury (MeHg) is a well-known neurotoxicant that causes severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. In this study, suppressive subtractive hybridization (SSH) was performed to identify differentially expressed genes on human neuroblastoma cell line, SH-SY5Y treated with DMSO and MeHg (6.25 uM) for 6 hr. Differentially expressed cDNA clones were sequenced and were screened by dot blot to eliminate false positive clones. 13 of 35 screened genes were confirmed using real time RT-PCR. These genes include EB1,90-kDa heat-shock protein, chromosome condensation-related SMC-associated protein and brain peptide Al, etc. Analysis of these genes may provide an insight into the neurotoxic effects of MeHg in human neuronal cells and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

  • PDF

Effects of MeOH Extract of Impatiens balsamina L. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (봉선화 전초의 메탄올 추출물이 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Jo, Yoon Jeong;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.1
    • /
    • pp.72-77
    • /
    • 2015
  • One of the most common forms of dementia, Alzheimer's disease (AD) is a progressive neurodegenerative disorder symptomatically characterized by impairment in memory and cognitive abilities. AD is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid ($A{\beta}$) peptides, believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. In this study, we tested that MeOH extract of Impatiens balsamina L. (IBM) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that IBM increased over 2 folds of the $sAPP{\alpha}$ secretion level, a main metabolite of ${\alpha}$-secretase. We shown that IBM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ without cytotoxicity. BACE (${\beta}$-site APP cleaving enzyme) FRET assay shown that BACE activity was specifically decreased in the presence of IBM. We suggest that Impatiens balsamina L. may be an useful source to develop a herbal medicine of BACE inhibitor for Alzheimer's disease.

The Acetylcholinesterase Inhibitory Activity of the EtOH Extract of Chaenomelis Fructus and its effects on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (모과 에탄올 추출물의 아세틸콜린에스테라제 저해활성과 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Kim, Ju Eun;Jo, Youn Jeong;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • Alzheimer's disease (AD) is a progressive neurodegenerative disorder symptomatically characterized by impairment in memory and cognitive abilities. AD is characterized pathologically by the deposition of ${\beta}$-amyloid ($A{\beta}$) peptides of 40-42 residues, which are generated by processing of amyloid precursor protein (APP). $A{\beta}$ has been believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. In this study, we tested that EtOH extract of the fruits of Chaenomeles sinensis Koehne (CSE) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that CSE increased over 2 folds of the $sAPP{\alpha}$ secretion level, a metabolite of ${\alpha}$-secretase. We showed that CSE reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ by down regulation of ${\beta}$-secretase (BACE) without cytotoxicity. Furthermore, we found that CSE inhibited BACE and acetylcholinesterase activity in vitro. We suggest that Chaenomelis Fructus may be an useful source to develop a herbal medicine for AD.

The Sedative Effects of Ethanol Extract from Cimicifugae Rhizoma (승마 에탄올 추출물의 진정 효과)

  • Choi, Yun-Jung;Yoon, Seo-Young;Choi, Ji-Young;Woo, Tae-Seon;Son, Kun-Ho;Lee, Yong-Soo;Cheong, Jae-Hoon
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.213-218
    • /
    • 2011
  • The aim of this study is to evaluate the sedative effects of ethanol extract and the three major constituents of Cimicifugae Rhizoma. They decreased locomotor activity significantly, and enhanced sleeping duration induced by thiopental sodium. The ethanol extract of Cimicifugae rhizoma and 24-epi-7,8-didehydrocimigenol-3-xyloside (24-epi.) increased the $Cl^-$ influx into the intracellular area of SH-SY5Y neuroblastoma cells significantly. The present results demonstrate that the sedative effects of Cimicifugae rhizoma are mediated via the GABA-gated $Cl^-$ channel, partly by 24-epi.

Merlin Represses Ras-Induced Cyclin D1 Transcription through the Cyclic AMP-Responsive Element

  • Kwak, Noh-Jin;Kim, Hong-Tae;Choi, Byung-Hyune;Kim, Young-Hoon;Rha, Hyoung-Kyun;Lee, Kweon-Haeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.289-293
    • /
    • 2003
  • Mutations in the NF2 tumor suppressor gene cause neurofibromatosis type 2, an autosomal dominant inherited syndrome predisposed to the multiple tumors of the nervous system. Merlin, the NF2 gene product was reported to block Ras-mediated cell transformation and represses Ras-induced expression of cyclin D1. However, the potential mechanism underlying the anti-Ras function of merlin on the cyclin D1 is still unclear. In this study, we investigated whether merlin decreases Ha-ras-induced accumulation of cyclin D1 at the transcriptional level, and demonstrated that merlin suppressed Ras-induced cyclin D1 promoter activity mediated by the cyclic AMP-responsive element (CRE) in SK-N-BE(2)C neuroblastoma cells. Furthermore, we found that merlin attenuated active Ras and forskolin-induced CRE-driven promoter activity. These results suggest that the transcriptional repression of the cyclin D1 expression by merlin may contribute to the inhibition of Ras-induced cell proliferation.

Neuroprotective Effects of Methanol Extracts of Jeju Native Plants on Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Human Neuroblastoma Cells

  • Kong, Pil-Jae;Kim, Yu-Mi;Lee, Hee-Jae;Kim, Sung-Soo;Yoo, Eun-Sook;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.171-174
    • /
    • 2007
  • Neuronal death is a common characteristic hallmark of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases, whereas oriental medicinal plants have to possess valuable therapeutic potentials to treat neurodegenerative diseases. In the present study, in an attempt to provide neuroprotective agents from natural plants, 80% methanol extracts of a wide range of medicinal plants, which are native to Jeju Island in Korea, were prepared and their protective effects on hydrogen peroxide-induced apoptotic cell death were examined. Among those tested, extracts from Smilax china and Saururus chinesis significantly decreased hydrogen peroxide-induced apoptotic cell death. The extracts attenuated hydrogen peroxide($H_2O_2$)-induced caspase-3 activation in a dose-dependent manner. Further, plant extracts restored $H_2O_2$-induced depletion of intracellular glutathione, a major endogenous antioxidant. The data suggest that Jeju native medicinal plants could potentially be used as therapeutic agents for treating or preventing neurodegenerative diseases in which oxidative stress is implicated.

Effect of Graphene on Growth of Neuroblastoma Cells

  • Park, Hye-Bin;Nam, Hyo-Geun;Oh, Hong-Gi;Kim, Jung-Hyun;Kim, Chang-Man;Song, Kwang-Soup;Jhee, Kwang-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.274-277
    • /
    • 2013
  • The unique properties of graphene have earned much interest in the fields of materials science and condensedmatter physics in recent years. However, the biological applications of graphene remain largely unexplored. In this study, we investigate the cell culture conditions, which are exposed to graphene onto glass and $SiO_2$/Si using human nerve cell line, SH-SY5Y. Cell viability was 84% when cultured on glass and $SiO_2$/Si coated with graphene as compared to culturing on polystyrene surface. Fluorescence data showed that the presence of graphene did not influence cell morphology. These findings suggest that graphene may be used for biological applications.