DOI QR코드

DOI QR Code

Effect of Graphene on Growth of Neuroblastoma Cells

  • Park, Hye-Bin (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Nam, Hyo-Geun (Department of Medical IT Convergence Engineering Kumoh National Institute of Technology) ;
  • Oh, Hong-Gi (Department of Medical IT Convergence Engineering Kumoh National Institute of Technology) ;
  • Kim, Jung-Hyun (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Chang-Man (Gumi Electronics & Information Technology Research Institute, Biomedical IT Convergence Center) ;
  • Song, Kwang-Soup (Department of Medical IT Convergence Engineering Kumoh National Institute of Technology) ;
  • Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • Received : 2012.12.04
  • Accepted : 2012.12.14
  • Published : 2013.02.28

Abstract

The unique properties of graphene have earned much interest in the fields of materials science and condensedmatter physics in recent years. However, the biological applications of graphene remain largely unexplored. In this study, we investigate the cell culture conditions, which are exposed to graphene onto glass and $SiO_2$/Si using human nerve cell line, SH-SY5Y. Cell viability was 84% when cultured on glass and $SiO_2$/Si coated with graphene as compared to culturing on polystyrene surface. Fluorescence data showed that the presence of graphene did not influence cell morphology. These findings suggest that graphene may be used for biological applications.

Keywords

References

  1. Bae, S., H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, et al. 2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5: 574-578. https://doi.org/10.1038/nnano.2010.132
  2. Ferrari, A. C., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al. 2006. Raman spectrum of graphene and graphene layers. Physic. Rev. Lett. 97.
  3. Gomez-Navarro, C., R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern. 2007. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano. Lett. 7: 3499-3503. https://doi.org/10.1021/nl072090c
  4. Jia, G., H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, et al. 2005. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39: 1378-1383. https://doi.org/10.1021/es048729l
  5. Jo, S. B., J. Park, W. H. Lee, K. Cho, and B. H. Hong. 2012. Large-area graphene synthesis and its application to interfaceengineered field effect transistors. Solid State Commun. 152: 1350-1358. https://doi.org/10.1016/j.ssc.2012.04.056
  6. Katsnelson, M. I. and K. S. Novoselov. 2007. Graphene: New bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143: 3-13. https://doi.org/10.1016/j.ssc.2007.02.043
  7. Kudin, K. N., B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. Car. 2008. Raman spectra of graphite oxide and functionalized graphene sheets. Nano. Lett. 8: 36-41. https://doi.org/10.1021/nl071822y
  8. Li, N., X. Zhang, Q. Song, R. Su, Q. Zhang, T. Kong, et al. 2011. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32: 9374-9382. https://doi.org/10.1016/j.biomaterials.2011.08.065
  9. Li, Y., Y. Liu, Y. Fu, T. Wei, L. Le Guyader, G. Gao, et al. 2012. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33: 402-411. https://doi.org/10.1016/j.biomaterials.2011.09.091
  10. Lim, W. S., Y. Y. Kim, H. Kim, S. Jang, N. Kwon, B. J. Park, et al. 2012. Atomic layer etching of graphene for full graphene device fabrication. Carbon 50: 429-435. https://doi.org/10.1016/j.carbon.2011.08.058
  11. Lv, M., Y. Zhang, L. Liang, M. Wei, W. Hu, X. Li, and Q. Huang. 2012. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line. Nanoscale 4: 3861-3866. https://doi.org/10.1039/c2nr30407d
  12. Meyer, J. C., A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth. 2007. The structure of suspended graphene sheets. Nature 446: 60-63. https://doi.org/10.1038/nature05545
  13. Mocharla, R., H. Mocharla, and M. E. Hodes. 1987. A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations. Nucleic Acids Res. 15: 10589. https://doi.org/10.1093/nar/15.24.10589
  14. Nayak, T. R., H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, et al. 2011. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 5: 4670-4678. https://doi.org/10.1021/nn200500h
  15. Park, S. Y., J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, and S. Hong. 2011. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23: H263-H267. https://doi.org/10.1002/adma.201101503
  16. Patel, H., C. Tscheka, and H. Heerklotz. 2009. Characterizing vesicle leakage by fluorescence lifetime measurements. Soft Matter 5: 2849-2851. https://doi.org/10.1039/b908524f
  17. Shang, N. G., P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, et al. 2008. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18: 3506-3514. https://doi.org/10.1002/adfm.200800951
  18. Vittorio, O., V. Raffa, and A. Cuschieri. 2009. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine 5: 424-431. https://doi.org/10.1016/j.nano.2009.02.006
  19. Weng, H. A., C. C. Wu, C. C. Chen, C. C. Ho, and S. J. Ding. 2010. Preparation and properties of gold nanoparticleelectrodeposited titanium substrates with Arg-Gly-Asp-Cys peptides. J. Mater. Sci. Mater. Med. 21: 1511-1519. https://doi.org/10.1007/s10856-010-4026-4
  20. Wu, L., H. S. Chu, W. S. Koh, and E. P. Li. 2010. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18: 14395-14400. https://doi.org/10.1364/OE.18.014395
  21. Xun, Z., D. Y. Lee, J. Lim, C. A. Canaria, A. Barnebey, S. M. Yanonne, and C. T. McMurray. 2012. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SHSY5Y cells. Mech. Ageing Dev. 133: 176-185. https://doi.org/10.1016/j.mad.2012.01.008
  22. Yang, D., A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, et al. 2009. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47: 145-152. https://doi.org/10.1016/j.carbon.2008.09.045

Cited by

  1. Graphene: an emerging material for biological tissue engineering vol.14, pp.2, 2013, https://doi.org/10.5714/cl.2013.14.2.063
  2. Graphite Oxide to Graphene. Biomaterials to Bionics vol.27, pp.46, 2015, https://doi.org/10.1002/adma.201500411
  3. Impact of Graphene on the Efficacy of Neuron Culture Substrates vol.7, pp.14, 2018, https://doi.org/10.1002/adhm.201701290