• 제목/요약/키워드: neurite outgrowth

검색결과 94건 처리시간 0.029초

pCT105로 원격 유도된 PC12 세포에서 조구등으로부터 분리한 corynoxeine의 항치매 효과 (The Effects of Anti-Alzheimer on CT105-induced PC 12 Cells by Corynoxeine Isolated from Uncariae Ramulus et Uncus)

  • 강형원;김상태;류영수
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1111-1119
    • /
    • 2004
  • In this study, we investigated that the effects of corynoxeine on the apoptosis by inducible CT105 in PC 12 cells and neuronpathogenic agent as CT105 confirmed with apoptosis, DNA fragmentation, neurite outgrowth and immunocytochemistry analysis This study examines whether corynoxeine have an anti-alzhmeimer agent by inhibition of apoptosis by CT105 and induces neurite outgrowth. Cytotoxicity was assessed in PC12 cell cultures by DNA fragmentation and measuring lactate dehydrogenase (LDH) in the culture media. The treatment of corynoxeine in exposure of cultures to CT105 and provided complete protection against cytotoxicity. CT105-induced cytotoxicity was blocked by apoptotsis, repaired by DNA fragmentation, neurite outgrowth and exposure to CT105 expression and regenerated with neurite outgrowth and immunocytochemistry by corynoxeine. These results indicate that in neuronal cell cultures, damage of T105, repaired excitotoxicity by corynoxeine and CT105-induced cytotoxicity is blocked primarily by the activation of anti-apoptosis.

구척(狗脊) 메탄올추출액이 신경세포의 재생 및 회복효과에 미치는 영향 (Effect of MeOH Extract of Cibotium barometz for Repair and Regeneration of Nogo A-injuried Neuroblastoma Cells)

  • 김상태;김정도;김영균
    • 생약학회지
    • /
    • 제35권2호통권137호
    • /
    • pp.105-109
    • /
    • 2004
  • The effect of MeOH extract of Cibotium barometz (or Cibaro) on nogo-A expression was studied by neurite cone collapse and neurite outgrowth assay. The degrees of mRNA expression of BDNF, GDNF, and Caspase-3 in nogo-A were also examined with SK-N-SH cell lines using RT-PCR and confocal microscopy methods. We have shown that Cibaro treatment inhibits nogo-A activation in SK-N-SH cell lines. It has been shown that Cibaro increases the expression rates of neurofilament and enhances neurite outgrowth in neuroblastoma cells as increasing the amount of Cibaro. It has been also shown that Cibaro increases the expression rates of BDNF, GDNF mRNA in neuroblastoma cells as increasing the amount of Cibaro. These results suggest that Cibaro induces neutrite outgrowth by nogo-A inactivation and is, therefore, crucial for the treatments against anaplastic disc and spinal neuronal anesthesia.

Methanol이 배양된 흰쥐 해마의 신경세포 및 신경교 세포의 성장에 미치는 영향 (Effect of Methanol on Cultured Neuronal and Glial Cells on Rat Hippocampus)

  • 이정임;조병채;배영숙;이경은
    • Toxicological Research
    • /
    • 제12권2호
    • /
    • pp.203-211
    • /
    • 1996
  • Methanol has been widely used as an industrial solvent and environmental exposure to methanol would be expected to be increasing. In humans, methanol causes metabolic acidosis and damage to ocular system, and can lead to death in severe and untreated case. Clinical symptoms are attributed to accumulation of forrnic acid which is a metabolic product of methanol. In humans and primates, formic acid is accumulated after methanol intake but not in rodents due to the rapid metabolism of methanol. Neverthless, the developmental and reproductive toxicity were reported in rodents. Previous reports showed that perinatal exposure to ethanol produces a variety of damage in human central nervous system by direct neurotoxicity. This suggests that the mechanism of toxic symptoms by methanol in rodents might mimic that of ethanol in human. In the present study I hypothesized that methanol can also induce toxicity in neuronal cells. For the study, primary culture of rat hippocampal neurons and glias were empolyed. Hippocampal cells were prepared from the embryonic day-17 fetuses and maintained up to 7 days. Effect of methanol (10, 100, 500 and 1000 mM) on neurite outgrowth and cell viability was investigated at 0, 18 and 24 hours following methanol treatment. To study the changes in proliferation of glial cells, protein content was measured at 7 days. Neuronal cell viability in culture was not altered during 0-24 hours after methanol treatment. 10 and 100 mM methanol treatment significantly enhanced neurite outgrowth between 18-24 hours. 7-day exposure to 10 or 100 mM methanol significantly increased protein contents but that to 1000 mM methanol decreased in culture. In conclusion, methanol may have a variety of effects on growing and differentiation of neurons and glial cells in hippocampus. Treatment with low concentration of methanol caused that neurite outgrowth was enhanced during 18-24 hours and the numbers of glial cell were increased for 7 days. High concentration of methanol brought about decreased protein contents. At present, the mechanism responsible for the methanol- induced enhancement of neurite outgrowth is not clear. Further studies are required to delineate the mechanism possibly by employing molecular biological techniques.

  • PDF

복신(茯神)의 인지기능 향상 및 해마 신경세포분화 촉진에 대한 효능 연구 (Effect of Hoelen Cum Radix on learning and memory enhancement via stimulation of neuronal differentiation in the hippocampus of the mouse brain)

  • 최진규;심여문;김원남;김선여;오명숙
    • 대한본초학회지
    • /
    • 제30권2호
    • /
    • pp.43-48
    • /
    • 2015
  • Objectives : The aim of this study was to investigate the memory enhancing properties of extract of Hoelen Cum Radix (HCR) and its possible mechanism in mice of normal condition. Methods : We evaluated the effects of HCR on cognitive function and memory enhancement in normal mice. Male ICR mice were orally administrated with HCR 100 mg/kg for 7 days and equal volume of saline was administrated to the control group in the same condition. We conducted two behavioral tests which measure the spatial working memory (Y-maze test) and cognitive fear memory (passive avoidance test). We also investigated whether HCR affects the hippocampal neurogenesis in the brain. To assess the effects of HCR on neural progenitor cell differentiation and neurite outgrowth in the early stage of hippocampal neurogenesis, we performed doublecortin (DCX), a direct neurogenesis marker, immunohistochemical analysis in the dentate gyrus (DG) of the mouse hippocampus. Results : HCR significantly enhanced memory and cognitive function as determined by the Y-maze test (p<0.05) and passive avoidance test (p<0.001). Moreover, HCR increased DCX positive cells (p<0.01) and neurite length (p<0.01) compared to the control group. These results indicated that HCR stimulates differentiation of neural progenitor cells and promotes neurite outgrowth in hippocampal DG of the mice. Conclusion : We concluded that HCR shows memory enhancing effects through the stimulation of hippocampal neurogenesis as a consequence of accelerated neuronal differentiation and neurite outgrowth in the DG of the hippocampus after HCR treatment.

Neuritogenic activity of hot water extract from Hericium erinaceus

  • Li, Hua;See, Hye-Jung;Moon, BoKyung;Yoo, Young-Bok;Lee, Chan
    • 한국버섯학회지
    • /
    • 제11권3호
    • /
    • pp.117-123
    • /
    • 2013
  • Hot water soluble extract was prepared from Hericium erinaceus and its neuritogenic activity on PC12h cells was analyzed, which is a clone originating from a rat pheochromocytomon. The moisture content of freeze dried hot water extract was 12.08%. The extract was mainly composed of carbohydrate (51.24%) followed by crude protein (24.04%), crude fat (0.26%), dietary fiber (5.09), and ash (12.18%). Fatty acids, glucan and inorganic constituents were found as minor components. The neuritogenic activity of hot water extract was evaluated under microscopic observation of neurite outgrowth in PC12h cells and by measuring the neurite length of induvidual cell. The extract exhibited strong effect of neurite outgrowth in a dose-dependent manner from 0.01 mg/mL to 1 mg/mL, in which longer neurite outgrowth was observed as the treatment dose increased.

[ $P2X_2$ ] Receptor Activation Potentiates PC12 Cell Differentiation Induced by ACAP in Acidic Environments

  • ;;;;이문희
    • 대한의생명과학회지
    • /
    • 제13권3호
    • /
    • pp.197-206
    • /
    • 2007
  • P2X receptors are membrane-bound ion channels that conduct $Na^+,\;K^+$, and $Ca^{2+}$ in response to ATP and its analogs. There are seven subunits identified so far ($P2X_1-P2X_7$). $P2X_2$ receptors are known to be expressed in a wide range of organs including brains and adrenal grands. PC12 cells are originated from adrenal grand and differentiated by nerve growth factor or pituitary adenylate cyclase activating poly peptide (PACAP). Previous studies indicate that $P2X_2$ receptor activation in PC12 cells couples to $Ca^{2+}-dependent$ release of catecholamine and ATP. It is known that acidic pH potentiates ATP currents at $P2X_2$ receptors. This leads to a hypothesis that $P2X_2$ receptors may play an important role in PC12 cell differentiation, one of the characteristics of which is neurite outgrowth, induced by the hormones under lower pH. In the present study, we isolated several clones which potentiate neurite outgrowth by PACAP in acidic pH (6.8), but not in alkaline pH (7.6). RT-PCR and electrophysiology data indicate that these clones express only functional $P2X_2$ receptors in the absence or presence of PACAP for 3 days. Potentiation of neurite outgrowth resulted from PACAP (100 nM) in acidic pH is inhibited by the two P2X receptor antagonists, suramin and PPADS ($100\;{\mu}M)$ each), and exogenous exprerssion of ATP-binding mutant $P2X_2$ receptor subunit ($P2X_2[K69A]$). However, acid sensing ion channels (ASICs) are not involved in PACAP-induced neurite outgrowth potentiation in lower pH since treatments of an inhibitor of ASICs, amyloride ($10\;{\mu}M$), did not give any effects to neurite extension. The vesicular proton pump ($H^+-ATPase$) inhibitor, bafilomycin (100 nM), reduced neurite extension indicating that ATP release resulted from $P2X_2$ receptor activation in PC12 cells is needed for neurite outgrowth. These were confirmed by activation of mitogen activated protein kinases, such as ERKs and p38. These results suggest roles of ATP and $P2X_2$ receptors in hormone-induced cell differentiation or neuronal synaptogenesis in local acidic environments.

  • PDF

신경세포의 Outgrowth 향상을 위한 마이크로 파이버 지지체와 전단응력의 영향 (Effects of Microfiber Substrate and Shear Stress on the Outgrowth of PC-12 Cells)

  • 김인애;박수아;김영직;김수향;신호준;이용재;신지원;신정욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.3-8
    • /
    • 2005
  • We introduced mechanical stimuli and micropatterned substrate with micro fibers to investigate the effects of those on neurite outgrowth along with nerve growth factor (NGF) in vitro. Microfiber substrates were fabricated using an electrospinning process. And PC-12 cells cultured on substrates were simulated with nerver growth factor and laminar flow shear stress in a fluid flow system The results suggest that microfiber substrates and fluid-induced shear stress are promising for simulating neuronal regeneration in a desired direction.

  • PDF

배양된 해마 신경세포의 성장에 대한 납의 영향

  • 김율아;김종곤;김용식;김영희;송동근
    • Toxicological Research
    • /
    • 제9권2호
    • /
    • pp.207-215
    • /
    • 1993
  • Lead is an environmental toxicant that causes a marked deficit in cognative development in infants and children. Damage to the hippocampus has been linked to the lead-induced deficit in the learning process. The present study examined the effects of lead on the development of hippocampal neurons in vitro. Hippocampal neurons were incubated with various concentrations in lead acetate (1nM to 30 nM) for 72 hrs from 4 h after plating, and the percentage of living neurons bearing neurites, neurite outgrowth and migration of multipolar neurons in culture were determined.

  • PDF

Requirement of EGF Receptor Kinase for Signaling by Calcium-Induced ERK Activation and Neurite Outgrowth in PC12 Cells

  • Park, Jung-Gyu;Jo, Young-Ah;Kim, Yun-Taik;Yoo, Young-Sook
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.468-474
    • /
    • 1998
  • Membrane depolarization in PC12 cells induces calcium influx via an L-type voltage-sensitive calcium channel (L-VSCC) and increases intracellular free calcium, which leads to tyrosine phosphorylation of epidermal growth factor (EGF) receptor and the associated adaptor protein, She. This activated EGF receptor complex then can activate mitogen-activated protein (MAP) kinase, as in nerve growth factor (NGF) receptor activation. In the present study, we investigated the role of EGF receptor in the signaling pathway initiated by membrane depolarization of PC12 cells. Prolonged membrane depolarization induced phosphorylation of extracellular signal-regulated kinase (ERK) within 1 min in undifferentiated PC12 cells. Pretreatment of PC12 cells with the calcium chelator EGTA abolished depolarization-stimulated ERK phosphorylation, but NGF-induced phosphorylation of ERK was not affected. The chronic treatment of phorbol ester, which down-regulated the activity of protein kinase C (PKC), did not affect the phosphorylation of ERK upon depolarization. In the presence of an inhibitor of EGF receptor, neither depolarization nor calcium ionophore increased the level of ERK phosphorylation. These data imply that the EGF receptor is functionally necessary to activate ERK and neurite outgrowth in response to the prolonged depolarization in PC12 cells, and also that PKC is apparently not involved in this signaling pathway.

  • PDF

Lipase Inactive Mutant of PLC-γ1 Regulates NGF-induced Neurite Outgrowth Via Enzymatic Activity and Regulation of Cell Cycle Regulatory Proteins

  • Le Xuan Nguyen, Truong;Ahn, Jee-Yin
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.888-894
    • /
    • 2007
  • Src homology (SH) domains of phospholipase C-$\gamma1$ (PLC-$\gamma1$) impair NGF-mediated PC12 cells differentiation. However, whether the enzymatic activity is also implicated in this process remains elusive. Here, we report that the enzymatic activity of phospholipase C-$\gamma1$ (PLC-$\gamma1$) is at least partially involved to the blockage of neuronal differentiation via an abrogation of MAPK activation, as well as sustained Akt activation. By contrast, Overexpression of WT-PLC-$\gamma1$ exhibited sustained NGF-induced MAPK activation, and triggered transient Akt activation resulting in profound inhibition of neurite outgrowth. However, lipase-inactive mutant (LIM) PLC-$\gamma1$ cells fail to suppress neurite outgrowth, although it contains intact SH domains, specifically enhancing the expression of cyclin D1 and p21 proteins, which regulate the function of retinoblastoma Rb protein. These observations show that the lipase inactive mutant of PLC-$\gamma1$ does not alter NGF-induced neuronal differentiation via enzymatic inability and the modulation of cell cycle regulatory proteins independent on SH3 domain.