• Title/Summary/Keyword: neural-fuzzy

Search Result 1,531, Processing Time 0.027 seconds

An Artificial Neural Network Learning Fuzzy Membership Functions for Extracting Color Sketch Features (칼라스케치 특징점 추출을 위한 퍼지 멤버쉽 함수의 신경회로망 학습)

  • Cho, Sung-Mok;Cho, Ok-Lae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.11-20
    • /
    • 2006
  • This paper describes the technique which utilizes a fuzzy neural network to sketch feature extraction in digital images. We configure an artificial neural network and make it learn fuzzy membership functions to decide a local threshold applying to sketch feature extraction. To do this. we put the learning data which is membership functions generated based on optimal feature map of a few standard images into the artificial neural network. The proposed technique extracts sketch features in an images very effectively and rapidly because the input fuzzy variable have some desirable characteristics for feature extraction such as dependency of local intensity and excellent performance and the proposed fuzzy neural network is learned from their membership functions, We show that the fuzzy neural network has a good performance in extracting sketch features without human intervention.

  • PDF

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.

A METHOD OF DEVELOPING SOFT SENSOR MODEL USING FUZZY NEURAL NETWORK

  • Chang, Yuqing;Wang, Fuli;Lin, Tian
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.103-109
    • /
    • 2001
  • Soft sensor is an effective method to deal with the estimation of variables, which are difficult to measure because of the reasons of economy or technology. Fuzzy logic system can be used to develop the soft sensor model by infinite rules, but the fuzzy dividing of variable sets is a key problem to achieve an accurate fuzzy logic model, In this paper, we proposed a new method to develop soft sensor model based on fuzzy neural network. First, using a novel method to divide the variable fuzzy sets by the process input and output data. Second, developing the fuzzy logic model based on that fuzzy set dividing. After that, expressing the fuzzy system with a fuzzy neural network and getting the initial soft sensor model based FNN. Last, adjusting the relative parameters of soft sensor model by the BP learning method. The effectiveness of the method proposed and the preferable generalization ability of soft sensor model built are demonstrated by the simulation.

  • PDF

A Design of Dynamically Simultaneous Search GA-based Fuzzy Neural Networks: Comparative Analysis and Interpretation

  • Park, Byoung-Jun;Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.621-632
    • /
    • 2013
  • In this paper, we introduce advanced architectures of genetically-oriented Fuzzy Neural Networks (FNNs) based on fuzzy set and fuzzy relation and discuss a comprehensive design methodology. The proposed FNNs are based on 'if-then' rule-based networks with the extended structure of the premise and the consequence parts of the fuzzy rules. We consider two types of the FNNs topologies, called here FSNN and FRNN, depending upon the usage of inputs in the premise of fuzzy rules. Three different type of polynomials function (namely, constant, linear, and quadratic) are used to construct the consequence of the rules. In order to improve the accuracy of FNNs, the structure and the parameters are optimized by making use of genetic algorithms (GAs). We enhance the search capabilities of the GAs by introducing the dynamic variants of genetic optimization. It fully exploits the processing capabilities of the FNNs by supporting their structural and parametric optimization. To evaluate the performance of the proposed FNNs, we exploit a suite of several representative numerical examples and its experimental results are compared with those reported in the previous studies.

Auto Generation of Fuzzy Control Rule using Neural-Fuzzy Fusion (뉴럴-퍼지 융합을 이용한 퍼지 제어 규칙의 자동생성에 관한 연구)

  • Lim, Kwang-Woo;Kim, Yong-Ho;Kang, Hoon;Jeon, Hong-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.120-129
    • /
    • 1992
  • In this paper we propose a fuzzy-neural network(FNN) which includes both advantages of the fuzzy logic and the neural network. The basic idea of the FNN is to realize the fuzzy rule-base and the process of reasoning by neural network and to make the corresponding parameters be expressed by the connection weights of neural network. After constructing the FNN, a novel controller consisting of a conventional P-controller and a FNN is explained. In this control scheme, the rule-base of a FNN are automatically generated by error back-propagation algorithm. Also the parallel connection of the P-controller and the FNN can guarantee the stability of a plant at initial stage before the rules are completely created. Finally the effectiveness of the proposed strategy will be verified by computer simulations using a 2 degree of freedom robot manipulator.

  • PDF

High Performance of Induction Motor Drive with HAI Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System (신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측)

  • Bang, Young-Keun;Kim, Jae-Hyoun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.

Design of Adaptive FNN Controller for Speed Contort of IPMSM Drive (IPMSM 드라이브의 속도제어를 위한 적응 FNN제어기의 설계)

  • 이정철;이홍균;정동화
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.39-46
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for the speed control of interior permanent magnet synchronous motor(IPMSM) drive. The design of this algorithm based on FNN controller that is implemented by using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights among the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strongly high performance and robustness in parameter variation, steady-state accuracy and transient response.

Reactor Vessel Water Level Estimation During Severe Accidents Using Cascaded Fuzzy Neural Networks

  • Kim, Dong Yeong;Yoo, Kwae Hwan;Choi, Geon Pil;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.702-710
    • /
    • 2016
  • Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.