Browse > Article
http://dx.doi.org/10.1016/j.net.2016.02.002

Reactor Vessel Water Level Estimation During Severe Accidents Using Cascaded Fuzzy Neural Networks  

Kim, Dong Yeong (Department of Nuclear Engineering, Chosun University)
Yoo, Kwae Hwan (Department of Nuclear Engineering, Chosun University)
Choi, Geon Pil (Department of Nuclear Engineering, Chosun University)
Back, Ju Hyun (Department of Nuclear Engineering, Chosun University)
Na, Man Gyun (Department of Nuclear Engineering, Chosun University)
Publication Information
Nuclear Engineering and Technology / v.48, no.3, 2016 , pp. 702-710 More about this Journal
Abstract
Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.
Keywords
Cascaded Fuzzy Neural Network; Fuzzy Neural Network; Reactor Vessel Water Level; Severe Accident;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. Murata, K. Isoda, T. Ikeuchi, T. Matsui, F. Shiraishi, M. Oba, Classification method of severe accident condition for the development of severe accident instrumentation and monitoring system in nuclear power plant, J. Nucl. Sci. Technol. 53 (2015) 870-877.
2 J.W. Hines, D.J. Wrest, R.E. Uhrig, Signal validation using an adaptive neural fuzzy inference system, Nucl. Technol. 119 (1997) 181-193.   DOI
3 M.G. Na, A neuro-fuzzy inference system for sensor failure detection using wavelet denoising, PCA and SPRT, J. Korean Nucl. Soc. 33 (2001) 483-497.
4 J. Garvey, D. Garvey, R. Seibert, J.W. Hines, Validation of online monitoring techniques to nuclear plant data, Nucl. Eng. Tech. 39 (2007) 149-158.   DOI
5 E.B. Bartlett, R.E. Uhrig, Nuclear power plant diagnostics using an artificial neural network, Nucl. Technol. 97 (1992) 272-281.   DOI
6 M. Marseguerra, E. Zio, Fault diagnosis via neural networks: the Boltzmann machine, Nucl. Sci. Eng. 117 (1994) 194-200.   DOI
7 Y.G. No, J.H. Kim, M.G. Na, D.H. Lim, K.I. Ahn, Monitoring Severe Accidents Using AI Techniques, Nucl. Eng. Technol. 44 (2012) 393-404.   DOI
8 M.G. Na, S.M. Lee, S.H. Shin, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Prediction of major transient scenarios for severe accidents of nuclear power plants, IEEE Trans. Nucl. Sci. 51 (2004) 313-321.   DOI
9 S.W. Cheon, S.H. Chang, Application of neural networks to a connectionist expert system for transient identification in nuclear power plants, Nucl. Technol. 102 (1993) 177-191.   DOI
10 Y. Bartal, J. Lin, R.E. Uhrig, Nuclear power plant transient diagnostics using artificial neural networks that allow "don'tknow" classifications, Nucl. Technol. 110 (1995) 436-449.   DOI
11 D.Y. Kim, K.H. Yoo, M.G. Na, Estimation of minimum DNBR using cascaded fuzzy neural networks, IEEE Trans. Nucl. Sci. 62 (2015) 1849-1856.   DOI
12 S.H. Lee, Y.G. No, M.G. Na, K.I. Ahn, S.Y. Park, Diagnostics of loss of coolant accidents using SVC and GMDH models, IEEE Trans. Nucl. Sci. 58 (2011) 267-276.   DOI
13 M.G. Na, W.S. Park, D.H. Lim, Detection and diagnostics of loss of coolant accidents using support vector machines, IEEE Trans. Nucl. Sci. 55 (2008) 628-636.   DOI
14 E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Machine Studies 7 (1975) 1-13.   DOI
15 M.G. Na, S.H. Shin, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Estimation of break location and size for loss of coolant accidents using neural networks, Nucl. Eng. Des. 232 (2004) 289-300.   DOI
16 A. Gofuku, A. Numoto, H. Yoshikawa, Y. Tanaka, Diagnostic techniques of a small-break loss-of-coolant accident at a pressurized water reactor plant, Nucl. Technol. 81 (1988) 313-332.   DOI
17 MAAP4 Modular Accident Analysis Program for LWR Power Plants User's Manual, prepared by Fauske & Associates, LLC for EPRI, Project RP3131-02, May 1994-June 2005.
18 T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Systems, Man, Cybern. SMC-1 (1985) 116-132.
19 D.Y. Kim, K.H. Yoo, J.H. Kim, M.G. Na, S. Hur, C.H. Kim, Prediction of leak flow rate using fuzzy neural networks in severe post-LOCA circumstances, IEEE Trans. Nucl. Sci. 61 (2014) 3644-3652.   DOI
20 D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison Wesley, Reading (MA), 1989.
21 M. Mitchell, An introduction to genetic algorithms, MIT Press, Cambridge (MA), 1996.
22 S.H. Park, D.S. Kim, J.H. Kim, M.G. Na, Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstances of NPPs, Nucl. Eng. Technol. 46 (2014) 373-380.   DOI
23 J.C. Duan, F.L. Chung, Cascaded fuzzy neural network model based on syllogistic fuzzy reasoning, IEEE Trans. Fuzzy Systems 9 (2001) 293-306.   DOI
24 S.H. Park, J.H. Kim, K.H. Yoo, M.G. Na, Smart sensing of the RPV water level in NPP severe accidents using a GMDH algorithm, IEEE Trans. Nucl. Sci. 61 (2014) 931-938.   DOI