• 제목/요약/키워드: neural network training

검색결과 1,750건 처리시간 0.027초

자율조직 CMAC 신경망에 의한 비선형 시계열 예측 (Prediction of Nonlinear Sequences by Self-Organized CMAC Neural Network)

  • 이태호
    • 융합신호처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.62-66
    • /
    • 2002
  • SOCMAC 신경망에 의하여 Mackey-Glass의 비선형 시계열 예측을 시도하였다 다차원 연속 입력 변수를 가지는 문제는 요구되는 기억용량의 규모가 너무 커서 CMAC에서는 일반적으로 취급이 곤난한 대상이었으나 SOCMAC에서는 이것이 가능함을 보였다. 또한 학습과정에서 수용영역(receptive field)을 가변으로 하는 개선된 방법을 제시하였다. 예측오차는 TDNN(time-delayed neural network)이나 BP(back-propagation) 수준이었다.

  • PDF

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.

PREDICTION OF EMISSIONS USING COMBUSTION PARAMETERS IN A DIESEL ENGINE FITTED WITH CERAMIC FOAM DIESEL PARTICULATE FILTER THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUES

  • BOSE N.;RAGHAVAN I.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.95-105
    • /
    • 2005
  • Diesel engines have low specific fuel consumption, but high particulate emissions, mainly soot. Diesel soot is suspected to have significant effects on the health of living beings and might also affect global warming. Hence stringent measures have been put in place in a number of countries and will be even stronger in the near future. Diesel engines require either advanced integrated exhaust after treatment systems or modified engine models to meet the statutory norms. Experimental analysis to study the emission characteristics is a time consuming affair. In such situations, the real picture of engine control can be obtained by the modeling of trend prediction. In this article, an effort has been made to predict emissions smoke and NO$_{x}$ using cylinder combustion derived parameters and diesel particulate filter data, with artificial neural network techniques in MATLAB environment. The model is based on three layer neural network with a back propagation learning algorithm. The training and test data of emissions were collected from experimental set up in the laboratory for different loads. The network is trained to predict the values of emission with training values. Regression analysis between test and predicted value from neural network shows least error. This approach helps in the reduction of the experimentation required to determine the smoke and NO$_{x}$ for the catalyst coated filters.

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

  • Kim, Kang-Suk;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • 제14권2호
    • /
    • pp.102-110
    • /
    • 2009
  • Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.

효율적인 신경회로망 학습을 이용한 $\bar{X}$ 관리도의 이상패턴 인식에 관한 연구 ($\bar{X}$ Control Chart Pattern Identification Through Efficient Neural Network Training)

  • 김기영;유정현;윤덕균
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.365-374
    • /
    • 1998
  • Control Chart is a powerful tool to detect that process is in control or out of control. CIM can have real effect when CIM involve automated quality control. A neural network approach is used for unnatural pattern detecting of control chart. The previous moving window method uses all unnatural pattern that is detected as moving time window. Therefore, It trains a large number of unnatural pattern and takes training time long. In this paper, the proposed method tests a small number of training unnatural pattern which modifies test data without repeating time. We shows that the proposed method has differences In training time and identification rate on the previous moving windows method. As results, we reduced training time and obtain the same identification rate.

  • PDF

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning

  • Kim, Huiyung;Moon, Jeongmin;Hong, Dongjin;Cha, Euiyoung;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1796-1809
    • /
    • 2021
  • The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating under downward flow conditions. Critical heat flux (CHF) is a crucial parameter for estimating the safety of a nuclear fuel; hence, this parameter should be accurately predicted. Here, machine learning is applied for the prediction of CHF in a narrow rectangular channel. Although machine learning can effectively analyze large amounts of complex data, its application to CHF, particularly for narrow rectangular channels, remains challenging because of the limited flow conditions available in existing experimental databases. To resolve this problem, we used four CHF correlations to generate pseudo-data for training an artificial neural network. We also propose a network architecture that includes pre-training and prediction stages to predict and analyze the CHF. The trained neural network predicted the CHF with an average error of 3.65% and a root-mean-square error of 17.17% for the test pseudo-data; the respective errors of 0.9% and 26.4% for the experimental data were not considered during training. Finally, machine learning was applied to quantitatively investigate the parametric effect on the CHF in narrow rectangular channels under downward flow conditions.

Identification and Control of Nonlinear Systems Using Haar Wavelet Networks

  • Sokho Chang;Lee, Seok-Won;Nam, Boo-Hee
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.169-174
    • /
    • 2000
  • In this paper, Haar wavelet-based neural network is described for the identification and control of discrete-time nonlinear dynamical systems. Wavelets are suited to depict functions with local nonlinearities and fast variations because of their intrinsic properties of finite support and self-similarity. Due to the orthonormal properties of Haar wavelet functions, wavelet neural networks result in a greatly simplified training problem. This wavelet-based scheme performs adaptively both the identification of nonlinear functions and the control of the overall system, while the multilayer neural network is applied to the control system just after its sufficient learning of the unknown functions. Simulation shows that the wavelet network can be a good alternative to a multilayer neural network with backpropagation.

  • PDF

신경망을 이용한 열간단조품의 초기 소재 설계 (Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

Human Face Recognition used Improved Back-Propagation (BP) Neural Network

  • Zhang, Ru-Yang;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.471-477
    • /
    • 2018
  • As an important key technology using on electronic devices, face recognition has become one of the hottest technology recently. The traditional BP Neural network has a strong ability of self-learning, adaptive and powerful non-linear mapping but it also has disadvantages such as slow convergence speed, easy to be traversed in the training process and easy to fall into local minimum points. So we come up with an algorithm based on BP neural network but also combined with the PCA algorithm and other methods such as the elastic gradient descent method which can improve the original network to try to improve the whole recognition efficiency and has the advantages of both PCA algorithm and BP neural network.