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Abstract—Diesel engines have low specific fuel consumption, but high particulate emissions, mainly soot. Diesel soot is
suspected to have significant effects on the health of living beings and might also affect global warming. Hence stringent
measures have been put in place in a number of countries and will be even stronger in the near future. Diesel engines
require either advanced integrated exhaust after treatment systems or modified engine models to meet the statutory norms.
Experimental analysis to study the emission characteristics is a time consuming affair. In such situations, the real picture
of engine control can be obtained by the modeling of trend prediction. In this article, an effort has been made to predict
emissions smoke and NOx using cylinder combustion derived parameters and diesel particulate filter data, with artificial
neural network techniques in MATLAB environment. The model is based on three layer neural network with a back
propagation learning algorithm. The training and test data of emissions were collected from experimental set up in the
laboratory for different loads. The network is trained to predict the values of emission with training values. Regression
analysis between test and predicted value from neural network shows least error. This approach helps in the reduction of
the experimentation required to determine the smoke and NOx for the catalyst coated filters.
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1. INTRODUCTION

Diesel engines are used as prime movers for heavy duty
vehicles due to their high efficiency and low specific fuel
consumption. Their application in the light duty vehicles
has also increased over the recent years. Considering the
stringent emission control legislations, the statutory limits
have become even more severe. The main pollutants are
smoke, HC, NO, and Particulate matter (Heywood,
1988). But Diesel engines have become more popular
than other engines, because of the better torque
characteristics exhibited and the fuel economy. Neural
network (NN) models have been studied in recent years,
with an objective of achieving human like performance in
many fields of knowledge engineering. NN applications
are growing rapidly as artificial intelligence tools in the
area of pattern recognition. The feasibility of using the in-
cylinder pressure - based variables in a diesel engine, has
been explored to predict gaseous exhaust emissions
through the use of artificial neural networks (Traver et
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al., 1999).

A mathematical model of a catalytic converter, for
predicting exhaust emissions with in-cylinder parameters
for an engine has been developed (Bhagavantrarao et al,
1989).

As the soot has to be removed periodically, when a
Diesel particulate filter (DPF) is used, some method
is to be found to burn the soot. The regeneration
behaviour and transient thermal response of diesel
particulate filters were studied and temperature was
considered to be a very important parameter as it
influences emissions (Rumminger et al., 2001). Pressure
drop across the DPF is measured by a manometer which
shows the pressure difference between the inlet and the
outlet. Pressure drop implies the extent and effectiveness
of combustion of accumulated soot particles within the
DPF. Many researchers have worked on the pressure drop
of diesel particulate filters and it is widely considered for
prediction of emissions (Athanasios et al., 2001; Pontikakis
et al., 2001; Versaevel et al., 2000; Sathish er al., 1999;
Athanasios and Konstandopoulos, 1999; Athanasios and
Evangelos, 1999; Julian et al., 1996; Athanasios and John
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Table 1. The specifications of the engine and test equipments.

SI. No Item Description
1. Engine type Four Stroke, Single cylinder, Diesel, Constant Speed, Water cooled
2. Make/Model Kirloskar TV1
3. BHP 7.0 at 1500 rpm (5.15 kW)
4. Bore X Stroke (mm) 87.5x110.0
5. Cyclic capacity 0.6615lit (0.6615 x 10 m?)
6. Normal Compression ratio 17.5:1
7. Dynamometer type Eddy current
8. Lever arm at load cell Load measurement by load cell.
9. Speed measurement Sensor with digital indicator
10. Fuel flow measurement Fuel measuring unit and flow transmitter
11. Air flow measurement orifice diameter Orifice meter with manometer and DP transmitter
12. Air flow measurement Rota meter
13. Temperature measurement RTD PT-100 sensors and transmitters
14. Cylinder pressure measurement Piezo sensor
15. Crank position/speed Rotary encoders
16. Analysis Through computer
17. Interfacing ADC/DAC card engine indicator-AX104
18. Power consumption 1 kW max.
19. Overall dimension 4000 x 2500 x 1500(Ht) mm.

1989). It has been found from literature that copper is a
good catalyst for smoke reduction and iron is good
catalyst for NOx reduction (Saravanan et al., 1999).

In this article, the Diesel particulate filter parameters
have also been taken into account along with the in-
cylinder combustion derived parameters for prediction of
emissions. These parameters are used in a MATLAB
software program for the prediction of Smoke and NOy at
the DPF exit, through the use of artificial neural network
techniques.

2. EXPERIMENTAL SETUP

A Kirloskar-make single cylinder four stroke diesel
engine served as the test facility.

All the signals from the sensors have been interfaced
to the computer. The computer can also display Pressure-
crank angle diagrams. The software enables real time
logging and off-line data analysis. The schematic
diagram of the test set up is shown in Figure 1.

The specifications of the engine and test equipments
are given in Table 1.

3. DESIGN OF DPF

A catalyst coated ceramic foam trap has been used in this
investigation. Diesel Particulate Filter cover volume is
equal to three times the volume of engine cylinder as

Fuel 9
Air @

t . Dynamo
EmQ”"e meter

Figure 1. Schematic diagram of test set-up.
A - Thermometer to measure trap inlet temperature.
B — Exhaust pipe.

C — Manometer

DPF - Diesel Particulate Filter

F, — Fuel flow rate in Kg/hr.

F, — Air flow rate in Kg/hr.

F, — Jacket water flow rate in Kg/hr.

N - Engine speed in rpm.

T, — Jacket water inlet temperature in K.

T, — Jacket water outlet temperature in K.

T; — Exhaust gas temperature in K.

shown in Figure 2. As noted from literature, ceramic
foam trap length has been made equal to trap diameter
and DPF cover volume equal to engine displacement
(Athanasios et al., 1989).

Space velocity is an important factor in the design of
DPF.
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Figure 2. Diesel particulate filter cover.

Exhaust gas flow rate m’h
DPF Volume in m’

Space Velocity =

According to the Federal test procedure, the oxidizer
is designed for space velocities in the range of 1,00,000
to 1,50,000 h™' at rated engine conditions. By conducting
the test at maximum load conditions and considering
the amount of exhaust gases, space velocity at the rate
of 1,13,000 h™ has been considered for designing the
DPF.

Figure 2 represents the diesel particulate filter cover.
The catalytically coated ceramic foam trap 10 pores per
inch approximately of 100 mm X 100 mm X 66 mm is
fitted inside the DPF cover. A digital temperature
indicator located at the center of DPF in the wall is used
for measuring the wall temperature. Pressure drop across
the DPF is measured with a mercury manometer.
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Figure 3. Typical pressure-crank angle diagram.

4. COLLECTION OF DATA

NAVCO make Kane-May International 9106 (Quintox)
gas analyzer is used to measure NOx. A Bosch smoke
meter is used to measure smoke. To provide a wide range
of performance and emissions, 50 readings have been
taken for different load conditions from no load to full
load. Every time, the load was changed and the speed
was brought to rated value to provide steady exhaust
emissions.

The combustion derived parameters (Traver et al.,
1999) for the in cylinder conditions were displayed along
with pressure-crank angle diagram (Figure 3) and also
calculated by empirical correlations. Tables 2 and 3 show
the various combustion derived parameters from the
cylinder pressure data and DPF respectively.

The parameters representative of combustion measur-
ed for the DPF are wall temperature and pressure drop.

Table 2. Combustion derived parameters from cylinder pressure data.

Shorthand

Abbreviation Explanation Definition and contribution
pp Peak pressure Maximum pressure encountered in individual cycle (kPa)
ppl Location of peak pressure Location of the maximum pressure encountered (CA®)
. Indicated mean effective  Integrated work for the compression and expansion cycles, divided by
imep . . .
pressure the displacement of a single cylinder (kPa).
i Tenition dela Time in crank angle degrees from fuel injected to the measured start
g y of combustion (CA®).
. . Time in crank angle degrees from 10% to 90% of the mass fraction
cd Combustion duration >
burned curve (CA°).
. Maximum value of the instantaneous heat release used to calculate the
maxq Maximum heat release .
mass fraction burned (kJ/deg.).
mgql i\/IaX{mum heat release Location of the maximum heat release (CA®).
ocation
Imf b50 Location of mass fraction Location of 50% of the integrated mass fraction burned curve (CA®).

burned — 50%
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Table 3. Combustion derived parameters from DPFE.

Shorthaqd Explanation Definition and contribution
Abbreviation
prdr Pressure drop ~ Pressure drop across the DPF, measured with a mercury manometer.
Temperature depends on the reaction inside the DPF, measured with a digital
wt Wall temperature

temperature indicator.

Irrespective of catalytic coating in the ceramic foam
filter, the pressure drop and wall temperature obtained by
measurement, will bring to light, the extent of combus-
tion inside the DPF.

5. ARTIFICIAL NEURAL NETWORK (ANN)
TECHNIQUES

Artificial neural networks are composed of elements that
perform in a manner that is analogous to the biological
neuron. Given a set of inputs, perhaps with desired
outputs, they self adjust to produce consistent responses.
The Neural Networks are used in universal approxi-
mation i.e., mapping input to the output. They are capable
of learning from their environment. They are used as a
tool for finding non-evident, non-linear dependencies
between data. The artificial neuron will have many inputs
and output. The structure of a.single neuron is given in
Figure 4.

The neuron has a set of nodes that connects it to inputs,
output, or other neurons, also called synapses. A Linear
combiner is a function that takes all inputs and produces a
single value. A simple way of doing it is by adding
together the inputs multiplied by the synaptic Weight.
The sum of the weights is then given to the activation
function.

The input should not be linear. Applying the activation
function takes any input from minus infinity to plus
infinity and squeezes it into —1 to 1 or 0 to 1 interval. The
threshold then acts on the activation function to give the
output value.

The number of neurons in the inner layers also called
hidden layers is not specific. When the number becomes
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Figure 4. Structure of a neuron.

too few, the quality of prediction will drop and the
network doesn't behave as the brains do. If it is made too
many — it will have a tendency to “remember” the right
answers, rather than predicting them. Then the neural
network will work very well on the familiar data, but will
fail on the data that had never been presented before.
Finding the compromise is more of an art, than science.

The neural network receives inputs, which can be of
different kinds. When the neuron in the first layer
receives its input, it will apply the Linear Combiner and
the activation function to the inputs and produce the
output. This output will become the input for the neurons
in the next layer. Thus the next layer will feed forward
the data, to the next layer until the last layer is reached.

The predicted output is then compared with the target
value and the error is then calculated as

Error = (Desired output — Predicted output)

The weights and biases are then calculated according
to the error obtained. Epoch is the presentation of the set
of training (input and/or target) vectors to a network and
the calculation of new weights and biases. The training
vectors can be presented one at a time or all together in a
batch.

Back propagation is a technique used to train multi-
layer feed-forward neural networks. It is used to calculate
previous layer weight and bias corrections by using the
learning rate and the layer error predictions as

Net Weight =
(Old Weight x Adjustment x Learning Rate)

The learning rate is an important factor. For example,
when it is set to 0.01, it will take 100 patterns to make a
10% adjustment. Momentum is something that can speed
up calculations significantly.

To train the neural network, the inputs are presented to
determine the values of the hidden layer and of the output
layer. The results of the output layer are compared with
the correct results. Then the weights in W and V are
adjusted so that they are closer to produce that output.
The rule used for modifying the weights is known as the
delta rule, because it changes each weight according to
how much it had in the final outcome (the delta, or partial
derivative of the output with respect to the weight). This
rule is applied to all the weights at the same time and the
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W weights are not changed and those new weights are
used in the V equation.

Adoption of Neural Network Techniques

The emission pattern with respect to load in a diesel
engine is found to be non linear since it depends on a
number of factors such as combustion conditions, load
temperature and pressure. Statistical methods having
linear regression are limited in their ability to predict the
process outcome. Although large amounts of data for
combustion conditions can be determined, there is an
appreciable scatter in these data and organizing them
suitably is a great task. It may be possible to use a
number of alternative input permutations for a given set
of loading conditions.

The above considerations have led to the identification
of neural network techniques as being particularly
suitable for modeling the emission characteristics under
the various loading conditions. When employed in a
neural network approach, it is relatively easy to incorpo-
rate a large number of system inputs to accommodate
these effects. As the modeling is directly incorporated
within the weights of the neural network connections,
any non linearity or interdependence within the relation-
ships is necessarily incorporated within the output
predictions. Supervised training or unsupervised training
techniques can be used for an investigation. The super-
vised learning requires the pairing of each input vector
with a target vector representing the desired output, input
vector together with desired output is called as training
pair. Usually a network is trained over a number of such
training pairs. If an input vector is applied, the corre-
sponding output vector is calculated and it is compared
with the corresponding target vector. The error difference
is then fed back through the network and the weights are
changed according to an algorithm which tends to
minimize the error. The vectors of the training set are
applied sequentially and errors are calculated and the
weight is adjusted for each vector, until the error for the
entire training set is at the lowest level. Unsupervised
training requires no target vector for the outputs, and
hence no comparisons to predetermined ideal responses.
In this work, back propagation neural network with
supervised training has been used.

The main objective of the present work is to study the
ability of neural networks in predicting the values of
emissions such as NOx and smoke using Back Propa-
gation network. Statistical correlation of emission with
in-cylinder and DPF derived information has been
obtained. Each emission parameter is dependent on some
input variables which rank top in correlation. More
number of readings are required for training in ANN.
Using 40 out of 50 experimental readings, corresponding
combustion derived parameters are obtained from their

a = logsig(n)

Figure 5. Log-Sigmoid transfer function.

pressure-crank angle diagrams. With these 40 set of
combustion derived parameters as input variables, train-
ing of network is done NN tool in the MATLAB
environment giving the corresponding emission values as
targets to obtain the trained network. Predicted emission
values and errors are obtained from the network.
Validation of this trained network is tested by the reserve
randomly chosen 10 values.

Poly line shows the curve for the ten predicted values
(y=ax*+bx +c¢ form). For this poly line non linear
curve, regression analysis has been done and the
correlation coefficient (R?) values have been obtained. R?
value nearer to 1 has the least error. R? value equal to 1
gives perfect fit. (Traver et al., 1999).

Figure 5 shows the Log-sigmoid transfer function.
This function acts as a kind of “smoothed” form of the
step functions. The algorithm used is logsig(n) = 1/(1 +
exp(—n)). Traingda training function has been selected
which give the minimum variations and used in the
present investigation.

Figure 6 shows the typical 3 layer back-propagation
neural network architecture.

Training of data (scaled values) has been carried out

7= g(a)

Input Layer Hidden Layer Output

Figure 6. Typical 3 layer back-propagation neural net-
work architecture.
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using MATLAB functions by back propagation network
method in supervised learning techniques. The trained
values have been compared with experimental test
values. Since they have a close proximity, for trend
prediction, trained network can be used.

6. RESULTS AND DISCUSSION

Different combinations of input variables, number of
layers and neurons have been tried and a trained network
has been obtained for smoke and NOx.

6.1. Prediction for Smoke
Figure 7 shows the relationship between error and number
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Figure 7. The relationship between error and no. of
epochs for training smoke emission.
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Figure 8. Variation of smoke with load for copper coated
DPF.

of epochs for training smoke emission with copper
catalyst coated DPF. It is seen that the goal is reached in
46555 epochs with 7 input variables, 18 neurons and 3
layer employing back propagation technique.

Using ANN program, out of the 50 readings taken, 40
values have been trained. The predicted network along
with experimental values is seen in Figure 8. It is seen
that the predicted and experimental values have a close
proximity. In Figure 9, the reserve 10 values have been
used for testing the predicted network from Figure 7. It is
seen that, the R? is 0.9955 for the graph predicted smoke
vs experimental smoke in Figure 10. Since it is close to 1,
fitting is perfect. So the trained network could very well
be used for smoke prediction.

6.2. Prediction for NOx

Figure 11 shows the relationship between error and
number of epochs for training NOx emission with iron
catalyst coated DPF. It is seen that the goal is reached in
56843 epochs with 8 input variables, 20 neurons and 3
layer employing back propagation technique.

Using ANN program, out of the 50 readings taken, 40
values have been trained. The predicted network along
with experimental values is seen in Figure 12. It is seen
that the predicted and experimental values have a close
proximity. In Figure 13, the reserve 10 values have been

y=-0.0131x* +0.4455x - 0.1846

R?=0.9867
20
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m
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Figure 9. Tesﬁng the network for smoke Vs load.
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Figure 10. The relationship between experimental smoke
and predicted smoke.
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Figure 11. The relationship between error and no. of
epochs for training NOX emission.
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Figure 12. Variation of NOx with load for iron coated
DPFE.

used for testing the predicted network from Figure 12. It
is seen that, the R is 0.9962 for the graph predicted NOx
vs experimental NOx in Figure 14. Since it is close to 1,
fitting is perfect. So the trained network could very well
be used for NOx prediction.

7. CONCLUSIONS
The combustion parameters such as load, pp, ppl, imep,

id, c¢d, Imfb50, maxq, prdr, wt have been considered as 10
input variables for the network. The network has been

500 - y=-6.781x" + 64.109x +325.14
R* =0.9665

Experimental
Predicted

— — — — Poly. (Predicted)
300 L

0 1 2 3 4 5 6
Load kW

Figure 13. Testing the network for Nox Vs Load.

vy =0.0008x* +0.3228x + 138.84

500 1 R? =0.9962

450 -
400 - B NOx

350

Predicted NOx

300 . T s
300 350 400 450 500
Experimental NOx

Figure 14. The relationship between experimental NOx
and predicted NOx.

trained for 10 input variables; 9,8,7 and 6 input variables
for different combinations under different number of
layers (namely single, two and three hidden layers) and
number of neurons (such as 100, 50, 25, 20, 18, 16, 15).
The combination with minimum hidden layers and
optimum input variables which gives the best regression
values (R* values nearer to 1) have been obtained. For
smoke the combination of the input variables such as
load, pp, ppl, Imfb50, maxq, prdr and wt with single
hidden layer and 18 neurons was found to give the best
R? value of 0.9955 between experimental and predicted
values. For NOx, the combination of the input variables
such as load, pp, imep, Imfb50, id, maxq, prdr and wt
with single hidden layer and 20 neurons was found to
give the best R* value of 0.9962 between experimental
and predicted values.

(1) An attempt has been made to use the Diesel
particulate filter data also along with the in cylinder
parameters for prediction of emissions after the DPF
using the Neural Network Techniques.

(2) The networks can be used to predict the engine
emissions in the absence of a gas analyzer.
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APPENDIX

Artificial Neural Network Program for Copper Catalyst
coated DPF-Prediction of Smoke Emission
clc;

close all;

clear all;

load=[0.003 0.01 0.025 0.038 0.055
0.057 0.067 0.076 0.088 0.102
0.114 0.128 0.158 0.159 0.163
0.174 0.186 0.21 0.221 0.233
0.25 0262 0274 0.285 0.288
0.31 0324 0338 0364 0378
0392 0408 0427 044 0.452
0463 0475 0489 0493 0.515];

pp=[0.464 0.466 0467 0484 0.509
0.513 0.516 0.518 0.532  0.553
0.558 0.56 0.564 0.566 0.568
0.57 0.572 0574 0575 0578
0.583 0.585 0.59 0.595 0.608
0.634 0.646 0.65 0.655 0.655
0.656 0.661 0.67 0.674 0.678
0.683 0.691 0.6915 0.6924 0.693];

ppl=[0.372 0372 0372 0368 0.368
0.368 0368 0368 0368 0.368
0368 0368 0368 0368 0.368
0368 0372 0372 0372 0372
0.372 0372 0368 0372 0372
0.372 0372 0372 0372 0372
0.372 0372 0372 0372 0372
0.372 0372 0372 0372  0.372]

Imfb50=[0.465 0.465 0463 0465 0.465
0465 0465 0465 0465 0465
0465 0465 0465 0465 0.465
0465 0465 0465 0465 0465
0465 0465 0465 0465 0465
0471 0471 0471 0465 0.465
0465 0465 0465 0465 0462
0462 0465 0465 0465 0.465];

maxg=[0.1205 0.1262 0.1283 0.1074 0.1173
0.1371 0.1321 0.1281 0.142 0.1684
0.174 0.1621 0.1523 0.1511 0.1498
0.1474 0.1578 0.1761 0.1826 0.1891
0.1942 0.1907 0.1969 0.212 0.214
0.2198 0.2231 0.2389 0.2564 0.261
0.2623 0.272 02758 0.276 0.2762
0.2851 0305 0312 0318 0.3244];

prdr=[0.42 0.42 0.42 0.42 043 0.43
043 0435 0435 044 0.44
0.44 0.44 0.44 0.45 0.45
0.45 0455 0455 0455 0455
0.46 0.47 0.49 0.51 0.52
0.53 0.53 0.54 0.54 0.54
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0.54 0.53 0.53 0.53 0.53

0.525 0.52 0.52 0.52];

wi=[0.227 0.23 0235 0242 025 0.253
0265 0269 0272 0285 0.289
0.293 0306 0.3] 0313 0315
0318 0324 0326 0327 0336
0.34 0344 0359 0372 0384
0.39 0.394 0401 0406 0.408
041 0431 0436 0438 0442
0458 0465 0471 0.496];

p=[ load;pp;ppl;imfb50;maxq;prdr;wt];
smoke=[0.01 0.01 0.01 0.01 0.01

0.015 0.015 0.015 0015 0.02
0.02 0.02 0.035 0.05 0.055
0.06 0.064 0.072 0074 0.076
0.095 0.098 0.1 0.106 0.11
0.112  0.113  0.113  0.115 0.117
0.119  0.12 0.136  0.134 0.14
0.148 0.169 0.176 0.182  0.185];
t=[smoke];

net=newff(minmax(p),[15,1],{'logsig, logsig'},'traingda")
net.trainParam.show = 100;
net.trainParam.Ir_inc =1.05 ;
net.trainParam.Ir_dec =0.7 ;
net.trainParam.max_fail =5 ;
net.trainParam.max_perf_inc =1.04 ;
net.trainParam.min_grad =1e-6 ;
net.trainParam.Ir = 0.01; %learning rate
net.trainParam.mc = 0.9; Jemomentum constant
net.trainParam.epochs = 100000;
net.trainParam.goal = 0.00001;
[net,tr]=train(net,p,t);
%p1=[0.15; 0.1231;0.3232];
a=sim(net,p);
fprintf('Traine smoke=%12.18d \n',a);
fprintf('load=%f\n\n',load);
fprintf('smoke=%f\n\n', smoke );
plot(load,a,load,smoke, 1:*");
xlabel('Load (scaled value));
Ylabel('Smoke (scaled value)’);
title('Smoke Emission for copper coated DPF");
legend("Predicted’, Experimental');

legend(’ Predicted ',Experimental',-1)

Output Value from ANN

0.011074 0.011603 0.012325 0.0053714 0.0095556
0.0099965 0.011021 0.012372 0.015768 0.020468
0.022284 0.027764 0.041054 0.04406 0.052202
0.060283 0.05889 0.071606 0.076688 0.083365
0.092892 0.092968 0.09942 0.10683 0.10911
0.11271 0.11464 0.11079 0.11616 0.11619 0.11517
0.12106 0.13557 0.13781 0.1403 0.14793 0.1686

0.17475 0.17877 0.18674

Experimental Value from tabulation

0.10.10.1 0.1 0.1 0.1 0.150.15 0.15 0.15 0.17 0.2
0.2 020303505055 0.6 0.64 0.68 0.72 0.74 0.76
0.84 0950981 1.06 1.1 1.11 1.12 1.13 1.13 1.14
1.15 1.17 1.19 1.2 1.28 1.36 1.34 1.4 1.48 1.64 1.69
1.76 1.82 1.84 1.85

Predicted Value from ANN

0.11 0.12 0.12 0.05 0.1 01
0.11 0.12 016 02 022 028
041 044 052 06 059 0.72
077 083 093 093 099 1.07
1.09 113 115 1.11 116 1.16
1.15 121 136 138 14 148
1.69 175 1.79 187

Errors

-0.0010738 -0.0016026 -0.0023249 0.0046286
0.00044445 0.0050035 0.0039792 0.0026284
-0.00076833 -0.00046829 -0.0022843 -0.0077637
-0.0060537 0.0059397 0.0027981 -0.00028262
0.0051104 0.00039426 -0.0026876 -0.0073645
0.0021084 0.0050322 0.00057978 -0.00083366
0.00089075 -0.00071246 -0.0016437 0.0022139
-0.0011617 0.00080992 0.0038252 -0.0010625
0.00043079 -0.0038112 -0.00029855 7.1224e-005
0.00039756 0.0012544 0.0032345 -0.0017441

Output test Value from ANN
0.0073788 0.018806 0.032823 0.063095 0.090454
0.11048 0.12156 0.13202 0.15943 0.18035

Predicted Value from ANN
0.070.19033063091.11.221321.591.8

Experimental Value from tabulation
0.1 0.17 03 0.68 0.84 1.11 1.14 1.28 1.64 1.84

Artificial Neural Network Program for Iron Catalyst
coated DPF - Prediction of NOx Emission
clc;

close all;

clear all;

load=[0.003 0.01 0.025 0.038 0.055
0.057 0.067 0.076 0.088 0.102
0.114 0.128 0.158 0.159 0.163
0.174 0.186 0.21 0.221 0.233
0.25 0262 0274 0.285 0.288
0.31 0.324 0338 0364 0.378
0.392 0408 0427 044 0.452
0463 0475 0489 0493 0.515];
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pp=[0.464 0466 0467 0484 0.509 0.3 0304 0308 0.31 0.311
0.513 0516 0.518 0532 0553 0.3205 0.326 0.332 0.3455 0.36
0.558 0.56 0.564 0.566 0.568 0.37 0374 0379 03865 0.388
0.57 0572 0574 0575 0578 0392 0395 0415 042 0.424
0.583 0585 0.59 0.595 0.608 04305 0441 045 0458 0478];
0634 0646 0.65 0.655 0.655 p=l load;pp;imep;lmfbS0;id;maxq;prdr;wtl;
0.656 0.661 0.67 0.674 0.678 nox=[0.32 0322 0325 033 0.345
0.683 0.691 0.6915 0.6924 0.693]; 0.36 0.375 0.38 0385 04
imep=[0.0388  0.03202 0.02673 0.03673 0.03973 0405 041 0415 042 0422
0.04025 0.041023 0.04166 0.0432 0424 0425 0428 0429 043
0.055 0.06259 0.05642 0.054834 0435 0439 0442 045 0.458
0.05286 0.060832 0.05822 0461 0462 0463 0465 0.465
0.064046 0.071034 0.07376 0466 0467 0469 047 047
0.075664 0.080032 0.08182 0471 0474 0475 0475 0475];
0.05863 0.08011 0.086026 0.09023 t=[nox];
0.092834 0.096456 0.1 net=newff(minmax(p),[20,1],{'logsig’, logsig'}, traingda")
0.105 0.1093 0.1146 0.124 0.118 ;
0.113 0.1152 0.126 0.126342 net.trainParam.show = 100;
0.126654 0.1272]; net.trainParam.lr_inc =1.05 ;
Imfb50=[0.465 0.465 0.463 0465 0.465 net.trainParam.lr_dec =0.7 ;
0465 0465 0465 0465 0.465 net.trainParam.max_fail =5 ;
0465 0465 0465 0465 0.465 net.trainParam.max_perf_inc =1.04 ;
0465 0465 0465 0465 0.465 net.trainParam.min_grad =1e-6 ;
0465 0465 0465 0465 0465 net.trainParam.Ir = 0.01; %learning rate
0471 0471 0471 0465 0.465 net.trainParam.mc¢ = 0.9; Jomomentum constant
0465 0465 0465 0465 0462 net.trainParam.epochs = 100000;
0462 0465 0465 0465 0.465]; net.trainParam.goal = 0.00001;
id=[0.287 0.288 0.288 0.288  0.288 [net,tr]=train(net,p,t);
0.288 0.288 0.288  0.287 0.289 %pl1=[0.15; 0.1231;0.3232};
0289 0288 0.288 0.288 0.289 a=sim(net,p);
0289 0.288 0.288 0.288 0.289 fprintf('Traine NOx=%12.18d \n',a);
0289 0.29 0.288 0.289 0.289 fprintf('load=%f\n\n',load);
0.289 0.289 0.288 0.288 0.291 fprintf('NOx=%1f\n\n',nox);
0291 0288 0291 0291 0.291 plot(load,a,load,nox, r:*");
0.289 0.29 0.289 0.289 0.289]; xlabel('Load (scaled value)";
maxq=[0.1205 0.1262 0.1283 0.1074 0.1173 Ylabel('NOx (scaled value)");
0.1371 0.1321 0.1281 0.142 0.1684 title(Nox Emission for iron coated DPF'),
0.174 0.1621 0.1523 0.1511 0.1498 legend('Predicted’, "Experimental’);
0.1474 0.1578 0.1761 0.1826 0.1891 legend(' Predicted’, Experimental’,-1)

0.1942 0.1907 0.1969 0212 0.214
0.2198 0.2231 0.2389 0.2564 0.261

0.2623 0.272 0.2758 0276 0.2762 Output Value from ANN
0.2851 0305 0312 0318 0.3244%; 0.32095 0.32342 0.32419 0.32271 0.35452 0.36822
prdr=[0.42 042 042 043 043 0.37206 0.37222 0.38495 0.40165 0.3989 0.40711
0435 04 0.44 0.44 0.45 0.41451 0.41776 0.42406 0.42851 0.42312 0.4292
045 0455 046 047 047 0.43177 0.42805 0.43496 0.43871 0.44141 0.45099
0.47 0475 0475 048 0.48 0.4559 0.45928 0.46361 0.46255 0.46561 0.46475
0.49 0.49 0.5 0.52 0.53 0.46557 0.46763 0.46879 0.46955 0.47083 0.46966
0.535 0.54 0.54 0.56 0.56 0.4755 0.47319 0.47497 0.47475
0565 0.565 0555 0.555 055
0.55 0.545 0.54 0.54 0.541; Experimental Value from tabulation
wt=[0.215 0217 0.22 0232  0.241 320 322 325 330 336 345 360 375 380 385 392 400
0243 0256 0258 0261 0272 405 410 413 415 420 422 424 425 427 428 429 430

0.276  0.28 0292 0294 0.298 433 435 439 442 450 458 460 461 462 463 464 465



PREDICTION OF EMISSIONS USING COMBUSTION PARAMETERS

465 466 467 468 469 470 470 471 474 474 475 475
475 475

Predicted Value from ANN

321 323 324 323 355 368 372 372 385 402 399 407
415 418 424 429 423 429 432 428 435 439 441 451
456 459 464 463 466 465 466 468 469 470 471 470
476 473 475 475

Errors

-0.00094534 -0.0014206 0.00080879 0.0072948
-0.0095171 -0.0082198 0.0029412 0.0077788
4.9606e-005 -0.0016491 0.0061046 0.0028917
0.00049048 0.0022351 -0.0020562 -0.0045101
0.0018814 -0.0012017 -0.0027743 0.0019529

4.2167e-005 0.00029146 0.0005936 -0.00098565
0.0021033 0.0017239 -0.0016148 0.00044553
-0.00061037 0.00024597 0.00042601 -0.00063002
0.00021105 0.0004519 -0.00083151 0.0013382
-0.0015003 0.0018069 3.3184e-005 0.00024769

Output test Value from ANN
0.33866 0.39361 0.41205 0.42579 0.43157 0.45516
0.4626 0.47183 0.47995 0.47671

Predicted test value from ANN
339 394 412 426 432 455 463 472 480 477

Experimental test value from tabulation
336 392 413 427 433 460 464 468 474 475
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