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Identification and Control of Nonlinear Systems
Using Haar Wavelet Networks

Sokho Chang, Seok Won Lee, and Boo Hee Nam

Abstract: In this paper, Haar wavelet-based neural network is described for the identification and control of discrete-time nonlinear
dynamical systems. Wavelets are suited to depict functions with local nonlinearities and fast variations because of their intrinsic
properties of finite support and self-similarity. Due to the orthonormal properties of Haar wavelet functions, wavelet neural networks
result in a greatly simplified training problem. This wavelet-based scheme performs adaptively both the identification of nonlinear
functions and the control of the overall system, while the multilayer neural network is applied to the control system just after
its sufficient learning of the unknown functions. Simulation shows that the wavelet network can be a good alternative to a

multilayer neural network with backpropagation.
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I. Introduction

Recently, wavelets have been applied successfully to
multiscale time-frequency analysis and synthesis in signal
processing[1], function approximation[2]-[5], and fault
detection and monitoring[6][7]. Wavelets are suited to
depict functions with local nonlinearities and fast variations
because of their intrinsic properties of finite support and
self- similarity.

The goal of most modern wavelet research[8] is to create
a set of basis functions and transforms that will give an
informative, efficient, and useful description of a function or
signal. If the signal is represented as a function of time,
wavelets provide efficient localization in both time and
frequency or scale. Another central idea is that of
multiresolution where the decomposition of a signal is in
terms of the resolution of detail.

In [9] and [10], they use Gaussian radial basis functions
for system identification and control. In [5], they use also
a nonorthogonal wavelet function for identification, and in
[4] they use Haar basis functions for nonlinear system
control, where they are dealing a multidimensional system
with a 1-dimensional system by using the weighted sum of
multivariables. In [2], they use a nonorthogonal wavelet
function by using a weighted sum of sigmoid functions for
function approximation. For function learning, we follow a
procedure in [3], where they use the Lemarie-Meyer
wavelet.

In this paper we use Haar wavelet functions for
identification and control of discrete-time nonlinear
dynamical systems as in [10], where multilayer neural
networks with backpropagation are used. In section 2, we
give a brief review of wavelet theory, In section 3, a
wavelet network for function estimation is designed. And
we present the simulation results in section 4, followed by
a conclusion.
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II. Haar wavelets

A wavelet is a small wave, which has its energy
concentrated in time to give a tool for the analysis of
transient, nonstationary, or time-varying phenomena. It still
has the oscillating wave-like characteristic but also has the
ability to allow simultaneous time and frequency analysis,
having its finite energy concentrated around a point.

Wavelets are adjustable and adaptable. Because there is
not just one wavelet, they can be designed to fit individual
applications. They are ideal for adaptive systems that adjust
themselves to suit the signal.

The Haar scaling function is defined as

d(x) =1 for 0<x<1 1)
0 otherwise,

and the wavelet function is defined as

o(x) =1 for 0<x<%
-1 for %(x(l @)

0 otherwise.

The wavelet functions, by dilations and translations, form

an orthonormal basis of L%(R), the space of all square
integrable functions on R. Specifically, there exists a
function ¢(#) such that

P (D =27 92"t ) 3)
form an orthonormal basis of L?(R). Therefore, the wavelet
basis induces an orthogonal decomposition of L%(R). Let

W,, be a subspace spanned by { 2740(2"7— M) pm—co o0}

and V, be the subspace spanned by ¢, (f)=2 z
#(2™t— n), then we have some properties of multiresolu -

tion analysis of L%(R):

LAR)= DW, @)
m

W, L V; )
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Vier = Vi@ W 6)

“ CV,Cor CViyy C - C LYR) @)
with Vo=@ and (\V, =0

LXR) =V, @ kL=Jik=°°Wk for all 8)
A eV, & A2 eV, . )

We will use the fact that any Ax)eL?(R) can be
approximated arbitrarily closely in V,, for some integer M.
That is, for any >0, there exists an M sufficiently large
such that

I f(x)—znkf(x), Bun(2)> dun(2) | < & . (10)

In the 2-dimensional analysis and synthesis, we need one
scaling function and three wavelet functions:

scaling function a(x,y)= ¢(x)¢(y) for approximation
wavelet function (x, v) = ¢(x)@(y) for horizontal detail
wavelet function v(x, y) = @(x)¢(y) for vertical detail
wavelet function d(x, v) = ¢p(x)p(y) for diagonal detail

Here, ¢(x) and ¢(x) are the 1-dimensional scaling
function and wavelet function, respectively, defined as
before. We will use only the scaling function for the
identification of two dimensional systems as in the one
dimensional case.

II1. Wavelet networks for identification of
nonlinear functions
The function Ax)eL%(R) can be estimated with a set of
given training data T,~{( x;, Ax) )}, i=1,---N.
For a sufficiently large M, we have an estimate:

£x) 20 A0, du(D)> Bux)
= 2 Cp ¢Mk(x),

R

(1)

M
where ¢,,(2)=2 2 $(2%x— k). Hence, the approximation
can be implemented by a three-layer network similar to the
multilayer neural networks. The input layer has one node
with input x. The hidden layer contains nodes indexed by
k, and the weights and nonlinearities of the hidden-layer
nodes are identical, i.e., 2% and $(x), respectively, and the
threshold for the £A-th node of the hidden layer is %. The
output layer is one linear node, and the weights ¢,'s of the
node are to be found. Since we are interested in the
functions of finite support, we assume that Ax) is
supported in [-1, 1] and that the hidden layer contains a
finite number of nodes, with the indices of the hidden nodes
running from — K to K for some positive integer K. So,
we have

) = gD~ 3 o). (12)

First we determine the number of hidden nodes. In the

1-D case, for a given resolution M and thus a subinterval
of length 2% we have 2(2%+1) uniform subinterval in

the finite support [ —1—2"%, 142, with two more
subintervals beyond the interval [-1 1] to provide some
safeguard.

(Similarly, for 2-dimensional functions, the number of

hidden layer nodes needed is 2%(2%+1)2)
Let the s-thsub-interval be

Ii: [xi_z—(M-i-l)’ xi+2—(M+1)]' (13)

Let the training data be XT=[x x, - x,] and
YT=[y, v, - v,] with y,=fx), i=1,2,..,n and
n=2(2"+1), where x, is the center point of the ;th
sub-interval in the hidden layer and is expressed as

=2"Y"0.5+8, k=—0Q"+1D), 2" 14)

If we let

M
() =2 2 p(2Mx—R) (15)
[0, .0, #anx,0,--,0] 7,

¢'(x)

then the coefficients ¢,'s are calculated by

=

Rx)= cpudx) = 27 ¢, (16)
Or, if we let @(x) = [¢'(x), -, p"(x)] and CT=
[er, 0, ¢, then s are also calculated by C =
9 '(x) Y. So we have an estimate of the function,
2(x) = 07(x)C. Since these sampling points «x's are the
nominal points, when we have a time varying point x/?
at time ¢, then by gradient descent method, ¢/{# can be
updated by

Ct+1) = CO + 20(x(D)[Ax() — 0T(x(d))C(H]
for some 7  0<{z7<1, (17)

or, simply,

M M
c(t+D=cd + 72 [AxdD) =27 c(].  (18)

For example, let's approximate the function expressed as

x

= 19

Y 1+4° (19)

whose graph is shown in Fig. 1, what we do first is to

choose the basis functions for the approximation of this

nonlinear function. For the following affine functions with
dilation m and translation n,

M
bun(x) = 2% 4(2%—n) with ¢ 4,(x0)=4(x), (20)

we can have a set of basis function with an appropriate
choice of m and n values, where m stands for tiling of the
frequencies of the function and n stands for tiling of the
time of the function. For simplicity in this example, we let
M=1. Then, we get six basis functions, which are
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M
translations of the mother wavelet 2 2 ¢(2%x), shown in

Fig. 2.

Dot

Fig. 2. Six basis function for approximation of the

x
1+

function y =

We could have other set of basis function with several
values of M and their translations. In the appendix of this
paper, the simulation program lists are given with M=3
for a smoother approximation of the nonlinear function than
with M=1.

IV. Simulations

The examples in this section are from [11]. We simulate
them by using both MNN(multilayer neural networks with
backpropagation) and WNN(wavelet neural network) for a
comparison. The simulations are carried out in the Pentium
computer using MATLAB.

Example 1: We consider here the problem of controlling
the plant which is described by the difference equation

f[yp((k/)e; + u(k) @D
— YR
= p+1 TR

y(k+1)

where the function A -) is assumed to be unknown. A
reference model is described by the first-order difference
equation

Il E+1) = 0.59,(B)+ 1k @2)
where H(B) = 0.35in(27f%) +0.3sin (271'%). The nonline -

ar function is estimated adaptively (on-line) as Wiy, (£)].
The control input to the plant at any instant k is computed
using  W{y,(k] in place of Ay, (k) asulk)=
—~ Wiy, (B1+0.5y,(k + (k). This results in the
nonlinear difference equation

vkt 1) = Av(B]— Wiy, (B]+0.59,(k) + (&)

governing the behavior of the plant. The overall scheme of
the system is shown in Fig. 3. In this case, the identification
of the nonlinear function A -) and the control of the
system are simultaneously obtained, while the control
system using a backpropagation neural network can be

ym(k+1) = amym(k) + r(K)

Reference ym(k)
Model

@)ﬂ(k)

r(k) er(k)

N
+ u(k)
—»@——»@ 2 yo(k)
+

Fig. 3. The overall scheme of the controlled system
with a wavelet neural network W,

effectively performed after the neural network N, finishes

the sufficient learning of the nonlinear function A -)
shown in Fig. 4.

The response of the controlled system is shown in Fig. 5.
The sum-squared error between y, and y, is 4.9117x

10~ for WNN with M=17, and 1.9443 x 10 ~* for MNN,
respectively, and the elapsed time is 0.22 for WNN and
0.49 for MNN, respectively. In the MNN, the unknown
plant was identified off-line by the Levenberg-Marquardt
method, And after the MNN for the nonlinear function was
fully trained, the MNN was applied to the control system,
while in WNN the identification was adaptively done in the
overall control system. In both cases, the setup times in the
program were excluded and only the execution times in the
control loops were compared. In Fig. 5, the two graphs for
v, and y,, appear almost overlapped.
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| Reference Ymlkt)=mm(k) + (k)
Model

=
=
7

Fig. 4. The overall scheme of the controlled system
with a backpropagation neural network Ny

Fig. 5. The outputs of the target system and plant
in Example 1.

Example 2: The plant we deal with is
vi(k+1) = Ay B,y (k—D] + w(k) (23)
where

ay (R y,Lb—1) [ay, (B +2.5]
1+ a2y, (R4 d®Vi(k—1)

a=4,

f{yp(k) s Yp(k_ 1)] =

and Ay, (k),y,(k—1)] is adaptively estimated as
Wiy,(B), y,(k—1)]. The reference model is

Vyulk+1) = 0.6y,.(B) + 0.2v.(k—1) + Hb (24)

and the reference input (%) is an alternating rectangular
wave with an amplitude 0.2. In this case the control input
is:

wh)=— Wiy, (k), v, (k—1)]+0.6v,(k)+ (25)

The overall scheme of the system is shown in Fig. 6. In
this case, the identification of the nonlinear function A -)
and the control of the system are simultaneously obtained,
while the control system using a backpropagation neural
network can be effectively performed after the neural
network N, finishes the sufficient learning of the nonlinear

function A -) shown in Fig. 7. The response of the
controlled system is shown in Fig. 8. The sum-squared error
between y, and y, is 0.001 for WNN and 0.0313 for
MNN, respectively, and the elapsed time is 0.27 for WNN
and 0.60 for MNN, respectively. In both examples, the
graphs of the target system and the plant are seen to be
almost overlapped. Learning a 2-dimensional function
becomes considerably difficult, since the available training
data is generally sparse and do not fill out the domain of
the function. But for many applications, good results can be
obtained by observing that the training data needed are
concentrated in a small number of regions in the overall
domain [—1, 1]%. In this example, the data interested are
concentrated on and around the diagonal in the plane. The
2-dimensional scaling function used is

a(x, v, 5, k) = 2Yp(2"x—p(2My— k). (26)

ymkt1) = ooym(k) + oiym(k=1) + (k)

reference ym(k)
model +
> €y(k)
Ik)
UK P yalkt) el Yolk-1)
-+ [« . p - PAKR™
Z \Z/ Z‘ Z|
+
[ -
> s Olo
N
A

Fig. 6. The overall scheme of the controlled system with
a wavelet neural network W, for Example 2.

V. Conclusions

In this paper we implement the wavelet network identifier
for nonlinear function using the Haar wavelet basis
functions. Due to the orthonormal properties of Haar
wavelet functions, wavelet networks result in a greatly
simplified training problem. These wavelet networks are
used for the adaptive control of unknown nonlinear
dynamical systems. Simulation shows that the wavelet
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Ym(kt1) = oaym(k) + ouym(k-1) + 1(k)

ym(k)
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Fig. 7. The overall scheme of the system with a backpro-

pagation neural network N, for Example 2.
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Fig. 8. The outputs of the target system and plant in
Example 2.

network can be a good alternative to a multilayer neural
network.
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Appendix
CEMTOOL Program List for the approximation of the
nonli function = X
nlinear fu v T+

EX1l.cem
clear
M=3; //M=7
t=[1;
for(k=-(2"M+1);k<=2"M;k=k+1)
t=[t; 2°(-M)*(0.5+k)];
y=t./(1+t./2);
eta=0.01;
C=zeros(2*(2"M+1), 1);
basis=[];
for(n=-2"M+1);n<=2"M;n=n+1)
basis=[basis;Hphi(M,n,t)'];
f=basis'*C;
sse=sum(abs(sqrt(y-f))."4);
while (sse > 107(-8) ){
error=y-f;
delC=eta*basis*error;
C=C+delC;
f=basis"*C;
sse = sum(abs(sqrt(y.-f))."4); }
f=basis'*C;
plot(t,[£y]);
sse = sum(abs(sqrt(f-y)).”4)

EX2.cem
clear
a=4;
y(H)=1;
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y@)=-1

for(k=2;k<=100;k=k+1){

y(k+D=a*y(k)*y(k-1)*(a*y(k)+2.5)/(1+y(k)"2
+a2y(e12);

plot(k, [y(), yk-DD;  }

Hphi.cem

// Haar affine scaling functions
// m: dilation n: translation function
function;

y < mnt
y=2(m/2)*Hsc(2”m*t-n);
Hpsi.cem

// Haar affine wavelet functions
function;

y < mn,t
y=2~(m/2)*Hwv(2"m*t-n);
Hsc.cem

// Haar scaling function
function;
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y<>t
y=11
for(i=1;i<=length(t);i=i+1){
ift(i) >= 0 && t(i) < 1)
y()=4
else
y()=0; }
[m,n]=size(t);
[o,pI=size(y);
iflm 1= o)
Y=y’
Hwv.cem
// Haar wavelet function
function;
y <>t
y=15
for(i=1;i<=length(t);i=i+1){
if (t(i)) >= 0 && t(i) < 0.5)

y()=1;
else{
if (t() >=0.5 && t(i) < 1)
y(i)=-1;
else y(i)=0;
}
}
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