• Title/Summary/Keyword: network node

Search Result 4,030, Processing Time 0.031 seconds

The Study Active-based for Improvement of Reliablity In Mobile Ad-hoc Network (이동 애드혹 네트워크에서 신뢰성 향상을 위한 액티브 기반연구)

  • 박경배;강경인;유재휘;김진용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.188-198
    • /
    • 2002
  • In this paper, we propose an active network to support reliable data transmission in the mobile ad-hoc network. The active network uses DSR(Dynamic Source Routing) protocol as its basic routing protocol, and uses source and destination nodes as key active nodes. For reliable improvement the source node is changed to source active node to add function that its buffer to store the last data with the flow control for data transmission per destination node. The destination node is changed to destination active node to add function that it requests the re-transmission for data that was not previously received by the destination active node with the flow control for data reception per source active node As the result of evaluation. we found the proposed active network guaranteed reliable data transmission with almost 100% data reception rate for slowly moving mobile ad-hoc network and with more 95% data reception rate, which is improvement of 3.5737% reception rate compared with none active network, for continuously fast moving mobile ad-hoc network.

  • PDF

Identification of Group-Node using Genetic Algorithm, and Re-Construction Technique of Social Network (유전자 알고리즘을 사용한 그룹노드의 식별 및 소셜 네트워크의 재구성 기법)

  • Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.837-844
    • /
    • 2015
  • A research of Social Network is focused to the single node and link. But when we consider the complexity of Social Network, I think we need the analysis of integrated influence by multiple nodes that satisfied with specific condition. But, the study of this area don't process apart from Sub-network concept. The purpose of this paper is to focus on the analysis of influence by multiple nodes. For it, I define a new term as Group Node, and it express multiple nodes that satisfied a specific condition. And I propose a method for reconstruction by using Group Node in Social Network. and I make a program that produce a Group Node satisfied with a special condition by using Genetic Algorithm, and show the result. I hope this result can be a start point of the Social Network analysis based on Group Node.

Routing Attack Detection for Performance Enhancement of AODV Protocol In Mobile Ad Hoc Networks (모바일 Ad Hoc 네트워크에서 AODV 프로토콜의 성능 향상을 위한 라우팅 공격 탐지)

  • Lee, Jae-Young;Choi, Seung-Kwon;Lee, Byong-Rok;Kim, Sun-Chul;Sin, Byoung-Gon;Cho, Yong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.632-641
    • /
    • 2007
  • Since the mobile node acts as the router, the Mobile Ad Hoc network requires the security methods that are different from that of network of the wire environment. Also, since the total network can't be included in the transmission area of the mobile node, when one node sends the message to the other node, we need the middle node. But if the middle node is the unreliable malicious node, we can't guarantee the secure message transmission. Also, because all nodes configuring the network are the mobile nodes, they use the restricted battery capacity and the restricted resources. Therefore, because we have trouble performing the encryption that many resources are required when we sending the message, it is vulnerable to the security than the network of the wire environment. Last, because the network topology continues to change by the mobility of nodes configuring the network, we need the security measure that matches the network characteristics. We suggest the routing attack detection for performance enhancement of AODV protocol in Mobile Ad Hoc networks.

Adjacent Matrix-based Hole Coverage Discovery Technique for Sensor Networks

  • Wu, Mary
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.169-176
    • /
    • 2019
  • Wireless sensor networks are used to monitor and control areas in a variety of military and civilian areas such as battlefield surveillance, intrusion detection, disaster recovery, biological detection, and environmental monitoring. Since the sensor nodes are randomly placed in the area of interest, separation of the sensor network area may occur due to environmental obstacles or a sensor may not exist in some areas. Also, in the situation where the sensor node is placed in a non-relocatable place, some node may exhaust energy or physical hole of the sensor node may cause coverage hole. Coverage holes can affect the performance of the entire sensor network, such as reducing data reliability, changing network topologies, disconnecting data links, and degrading transmission load. It is possible to solve the problem that occurs in the coverage hole by finding a coverage hole in the sensor network and further arranging a new sensor node in the detected coverage hole. The existing coverage hole detection technique is based on the location of the sensor node, but it is inefficient to mount the GPS on the sensor node having limited resources, and performing other location information processing causes a lot of message transmission overhead. In this paper, we propose an Adjacent Matrix-based Hole Coverage Discovery(AMHCD) scheme based on connectivity of neighboring nodes. The method searches for whether the connectivity of the neighboring nodes constitutes a closed shape based on the adjacent matrix, and determines whether the node is an internal node or a boundary node. Therefore, the message overhead for the location information strokes does not occur and can be applied irrespective of the position information error.

Network Coding-based Maximum Lifetime Algorithm for Sliding Window in WSNs

  • Sun, Baolin;Gui, Chao;Song, Ying;Chen, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1298-1310
    • /
    • 2019
  • Network coding (NC) is a promising technology that can improve available bandwidth and packet throughput in wireless sensor networks (WSNs). Sliding window is an improved technology of NC, which is a supplement of TCP/IP technology and can improve data throughput and network lifetime on WSNs. This paper proposes a network coding-based maximum lifetime algorithm for sliding window in WSNs (NC-MLSW) which improves the throughput and network lifetime in WSN. The packets on the source node are sent on the WSNs. The intermediate node encodes the received original packet and forwards the newly encoded packet to the next node. Finally, the destination node decodes the received encoded data packet and recovers the original packet. The performance of the NC-MLSW algorithm is studied using NS2 simulation software and the network packet throughput, network lifetime and data packet loss rate were evaluated. The simulations experiment results show that the NC-MLSW algorithm can obviously improve the network packet throughput and network lifetime.

A LOW-COST PROTOCOL IN SENSOR NETWORK UBIQUITOUS ENVIRONMENT

  • Lee Dong-heui;Cho Young-bok;Kim Dong-myung;Lee Sang-ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.766-769
    • /
    • 2005
  • In a ubiquitous environment made up of multiple sensors, most sensors participate in communications with limited battery, and the sensor node isn't able to participate in communications when all the battery is used up. When an existing authentication method is used for the sensor node which has to participate in a long term communication with limited battery, it creates a problem by making the length of network maintenance or sensor node's operation time relatively shorte. Therefore, a network structure where RM (Register Manager) node and AM (Authentication Manager) node are imported to solve the energy consumption problem during a communication process is presented in this thesis. This offers a low power protocol based on safety through a mutual authentication during communications. Through registration and authentication manager nodes, each sensor nodes are ensured of safety and the algorithm of key's generation, encryption/descramble and authentication is processed with faster operation speed. So the amount of electricity used up during the communications between sensor nodes has been evaluated. In case of the amount of electrical usage, an average of $34.783\%$ for the same subnet and 36.855 for communications with two different subnets, are reduced. The proposed method is a protocol which maintains the limited battery for a long time to increase the effectiveness of energy usage in sensor nodes and can also increase the participation rate of communication by sensor nodes.

  • PDF

Improved Ad Hoc On-demand Distance Vector Routing(AODV) Protocol Based on Blockchain Node Detection in Ad Hoc Networks

  • Yan, Shuailing;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.46-55
    • /
    • 2020
  • Ad Hoc network is a special wireless network, mainly because the nodes are no control center, the topology is flexible, and the networking could be established quickly, which results the transmission stability is lower than other types of networks. In order to guarantee the transmission of data packets in the network effectively, an improved Queue Ad Hoc On-demand Distance Vector Routing protocol (Q-AODV) for node detection by using blockchain technology is proposed. In the route search process. Firstly, according to the node's daily communication record the cluster is formed by the source node using the smart contract and gradually extends to the path detection. Then the best optional path nodes are chained in the form of Merkle tree. Finally, the best path is chosen on the blockchain. Simulation experiments show that the stability of Q-AODV protocol is higher than the AODV protocol or the Dynamic Source Routing (DSR) protocol.

Application of the Hamiltonian circuit Latin square to a Parallel Routing Algorithm on Generalized Recursive Circulant Networks

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1083-1090
    • /
    • 2015
  • A generalized recursive circulant network(GR) is widely used in the design and implementation of local area networks and parallel processing architectures. In this paper, we investigate the routing of a message on this network, that is a key to the performance of this network. We would like to transmit maximum number of packets from a source node to a destination node simultaneously along paths on this network, where the ith packet traverses along the ith path. In order for all packets to arrive at the destination node securely, the ith path must be node-disjoint from all other paths. For construction of these paths, employing the Hamiltonian Circuit Latin Square(HCLS), a special class of (n x n) matrices, we present O(n2) parallel routing algorithm on generalized recursive circulant networks.

Modeling and Simulation of Social Network using Correlation between Node and Node Weight (노드 간 연관성과 노드 가중치를 이용한 소셜 네트워크 모델링 및 시뮬레이션)

  • Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.949-954
    • /
    • 2016
  • The usage of Social Network in business environment is now processing various methods. The purpose of this paper is doing a simulation about how each node of social network reacts to a special input, and how a specific node have an effect to other nodes. Also, when we change weight of node in the same input, we can trace about change of node status in real time. So, we can use this model for identification of important person in social network, and we can use it for checking the reaction of person in specific input. we use VENSIM program for modeling and simulation process.

A Multistage Authentication Strategy for Reliable N-to-N Communication in CGSR based Mobile Ad Hoc Networks (CGSR 기반의 이동 애드 흑 네트워크에서 신뢰성 있는 통신을 위한 노드간 인증 기법)

  • Lee Hyewon K.;Mun Youngsong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.659-667
    • /
    • 2005
  • A Mobile Ad Hoc Network(MANET) is a multi hop wireless network with no prepared base stations or centralized administrations, where flocks of peer systems gather and compose a network. Each node operates as a normal end system in public networks. In addition to it, a MANET node is required to work as a router to forward traffic from a source or intermediate node to others. Each node operates as a normal end system in public networks, and further a MANET node work as a router to forward traffic from a source or intermediate node to the next node via routing path. Applications of MANET are extensively wide, such as battle field or any unwired place; however, these are exposed to critical problems related to network management, node's capability, and security because of frequent and dynamic changes in network topology, absence of centralized controls, restricted usage on network resources, and vulnerability oi mobile nodes which results from the special MANET's character, shared wireless media. These problems induce MANET to be weak from security attacks from eavesdropping to DoS. To guarantee secure authentication is the main part of security service In MANET because networks without secure authentication are exposed to exterior attacks. In this paper, a multistage authentication strategy based on CGSR is proposed to guarantee that only genuine and veritable nodes participate in communications. The proposed authentication model is composed of key manager, cluster head and common nodes. The cluster head is elected from secure nodes, and key manager is elected from cluster heads. The cluster head will verify other common nodes within its cluster range in MANET. Especially, ID of each node is used on communication, which allows digital signature and blocks non repudiation. For performance evaluation, attacks against node authentication are analyzed. Based on security parameters, strategies to resolve these attacks are drawn up.