• Title/Summary/Keyword: network (ANN)

Search Result 1,166, Processing Time 0.027 seconds

KNN/ANN Hybrid Location Determination Algorithm for Indoor Location Base Service (실내 위치기반서비스를 위한 KNN/ANN Hybrid 측위 결정 알고리즘)

  • Lee, Jang-Jae;Jung, Min-A;Lee, Seong-Ro;Song, Iick-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • As fingerprinting method, k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighbors k and positions of reference points(RPs). So artificial neural network(ANN) clustering algorithm is applied to improve KNN, which is the KNN/ANN hybrid algorithm presented in this paper. For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. In the proposed algorithm, through KNN, k RPs are firstly chosen as the data samples of ANN based on SNR. Then, the k RPs are classified into different clusters through ANN based on SNR. Experimental results indicate that the proposed KNN/ANN hybrid algorithm generally outperforms KNN algorithm when the locations error is less than 2m.

Optimization of a Centrifugal Compressor Impeller(II): Artificial Neural Network and Genetic Algorithm (원심압축기 최적화를 위한 연구(II): 인공지능망과 유전자 알고리즘)

  • Choi, Hyoung-Jun;Park, Young-Ha;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.433-441
    • /
    • 2011
  • The optimization of a centrifugal compressor was conducted. The ANN (Artificial Neural Network) was adopted as an optimization algorithm, and it was learned and trained with the DOE (Design of Experiment). In the DOE, it was predicted the main effect and the interaction effect of design variables to the objective function. The ANN was improved in the optimization process using the GA (Genetic Algorithm). When any output at each generation was reached a standard level, it was re-calculated by the CFD (Computational Fluid Dynamics) and it was applied to develop a new ANN. After 6th generation, the prediction difference between ANN and CFD was less than 1%. A pareto of the efficiency versus the pressure ratio was obtained through the 21th generation. Using this method, the computational time for the optimization was equivalent to the time consumed by the gradient method, and the optimized results of multi-objective function were obtained.

Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Ahmadi, Masoud;Wakil, Karzan;Trung, Nguyen Thoi;Toghroli, Ali
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.183-195
    • /
    • 2020
  • Mineral admixtures have been widely used to produce concrete. Pozzolans have been utilized as partially replacement for Portland cement or blended cement in concrete based on the materials' properties and the concrete's desired effects. Several environmental problems associated with producing cement have led to partial replacement of cement with other pozzolans. Furnace slag and fly ash are two of the pozzolans which can be appropriately used as partial replacements for cement in concrete. However, replacing cement with these materials results in significant changes in the mechanical properties of concrete, more specifically, compressive strength. This paper aims to intelligently predict the compressive strength of concretes incorporating furnace slag and fly ash as partial replacements for cement. For this purpose, a database containing 1030 data sets with nine inputs (concrete mix design and age of concrete) and one output (the compressive strength) was collected. Instead of absolute values of inputs, their proportions were used. A hybrid artificial neural network-genetic algorithm (ANN-GA) was employed as a novel approach to conducting the study. The performance of the ANN-GA model is evaluated by another artificial neural network (ANN), which was developed and tuned via a conventional backpropagation (BP) algorithm. Results showed that not only an ANN-GA model can be developed and appropriately used for the compressive strength prediction of concrete but also it can lead to superior results in comparison with an ANN-BP model.

A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic (항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The accuracy of forecasting is remarkably important to reduce total cost or to increase customer services, so it has been studied by many researchers. In this paper, the artificial neural network (ANN), one of the most popular nonlinear forecasting methods, is compared with autoregressive integrated moving average(ARIMA) model through performing a prediction of container traffic. It uses a hybrid methodology that combines both the linear ARIAM and the nonlinear ANN model to improve forecasting performance. Also, it compares the methodology with other models in performance for prediction. In designing network structure, this work specially applies the genetic algorithm which is known as the effectively optimal algorithm in the huge and complex sample space. It includes the time delayed neural network (TDNN) as well as multi-layer perceptron (MLP) which is the most popular neural network model. Experimental results indicate that both ANN and Hybrid models outperform ARIMA model.

Heart rate monitoring and predictability of diabetes using ballistocardiogram(pilot study) (심탄도를 이용한 연속적인 심박수 모니터링 및 당뇨 예측 가능성 연구(파일럿연구))

  • Choi, Sang-Ki;Lee, Geo-Lyong
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.231-242
    • /
    • 2020
  • The thesis presents a system that continuously collects the human body's physiological vital information at rest with sensors and ICT information technology and predicts diabetes using the collected information. it shows the artificial neural network machine learning method and essential basic variable values. The study method analyzed the correlation between heart rate measurements of BCG and ECG sensors in 20 DM- and 15 DM+ subjects. Artificial Neural Network (ANN) machine learning program was used to predictability of diabetes. The input variables are time domain information of HRV, heart rate, heart rate variability, respiration rate, stroke volume, minimum blood pressure, highest blood pressure, age, and sex. ANN machine learning prediction accuracy is 99.53%. Thesis needs continuous research such as diabetic prediction model by BMI information, predicting cardiac dysfunction, and sleep disorder analysis model using ANN machine learning.

Prediction of Deep Excavation-induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 굴착에 따른 지표침하평가)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.69-76
    • /
    • 2003
  • This paper presents the prediction of deep excavation-induced ground surface movements using artifical neural network(ANN) technique, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Arificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.

The Parameter Compensation Technique of Induction Motor by Neural Network (신경회로망을 이용한 유도전동기의 파라미터 보상)

  • Kim Jong-Su;Oh Sae-Gin;Kim Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.169-175
    • /
    • 2006
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

Prediction of Deep Excavation-induced Ground Surface Movements Using Artificial Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.53-65
    • /
    • 2004
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network(ANN) technique, which is of prime importance in the damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements, was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Artificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effective for a first-order prediction of ground movements associated with deep-excavation.

Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jumaat, Mohd Zamin;Jameel, Mohammed;Arumugam, Arul M.S.
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.237-252
    • /
    • 2013
  • This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of ten and four neurons in first and second hidden layers using TRAINLM training function predicted highly accurate and more precise load-deflection diagrams compared to classical linear regression (LR). The ANN's MSE values are 40 times smaller than the LR's. The test data R value from ANN is 0.9931; thus indicating a high confidence level.