References
- Adeli, H. (2001), "Neural networks in civil engineering", Comput. Aided Civil Infrastruct Eng., 16(1), 26-42.
- Ashour, A. and Yang, K.H. (2008), "Application of plasticity theory to reinforced concrete deep beams: a review", Mag. Concrete Res., 60(9), 9657-9664.
- Ashrafi, H.R., Jalal, M. and Garmsiri, K. (2010), "Prediction of load-displacement curve of concrete reinforced by composite fibers (steel and polymeric) using artificial neural network", Expert Syst. Appl., 37(12), 7663-7668. https://doi.org/10.1016/j.eswa.2010.04.076
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Bilgehan, M. and Turgut, P. (2010a), "Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity", Res. Nondestruct. Eval., 21(1), 1-17. https://doi.org/10.1080/09349840903122042
- Bilgehan, M and Turgut, P. (2010b), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete., 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271
- British Standard Institution (1985), "Structural use of concrete", (BS 8110: Part 1. Code of Practice for Design and Construction), BSI, London.
- Chandak, R., Upadhyay, A. and Bhargava, P. (2008), "Shear lag prediction in symmetrical laminated composite box beams using artificial neural network", Struct. Eng. Mech., 29(1), 77-89. https://doi.org/10.12989/sem.2008.29.1.077
- Chemrouk, M. and Kong, F.K. (2004), "High strength concrete continuous deep beams-with web reinforcement and shear-span variations", Adv. Struct. Eng., 7, 3229-3243.
- CIRIA Guide 2. (1977), "The design of deep beams in reinforced concrete", London: Over Arup and Partners, and Construction Industry Research and Information Association, 131.
- Danielson, K.T., Adley, M.D. and O'Daniel, J.L. (2010), "Numerical procedures for extreme impulsive loading on high strength concrete structures", Comput. Concrete, 7(2), 159-167. https://doi.org/10.12989/cac.2010.7.2.159
- Davis, L. (1991), "Hand book of genetic algorithms", (New York: Van Nostrand Reinhold).
- Eurocode 2. (1992), "Design of concrete structure, Part 1, general rules and regulations for building", London: British standards institution.
- Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering, principle and understanding", ASCE J. Comput. Civil Eng., 8(2), 131-148. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131)
- Kang, H.T., Teng, S., Kong, F.K. and Lu, H.Y. (1997), "Main tension steel in high strength concrete deep and short beams", Struct. J., 94(6), 752-768.
- Lam, J.Y.K., Ho, J.C.M. and Kwan, A.K.H. (2009), "Maximum axial load level and minimum confinement for limited ductility design of high strength concrete columns", Comput. Concrete, 6(5), 357-376. https://doi.org/10.12989/cac.2009.6.5.357
- Lee, H.S., Ko, D.W. and Sun, S.M. (2011), "Behavior of continuous RC deep girders that support walls with long end shear spans", Struct. Eng. Mech., 38(4), 385-403. https://doi.org/10.12989/sem.2011.38.4.385
- Londhe, R.S. (2011), "Shear strength analysis and prediction of reinforced concrete transfer beams in highrise buildings", Struct. Eng. Mech., 37(1), 39-59. https://doi.org/10.12989/sem.2011.37.1.039
- Lu, W.Y., Hwang, S.J. and Lin, I.J. (2010), "Deflection prediction for reinforced concrete deep beams", Comput. Concrete, 7(1), 1-16. https://doi.org/10.12989/cac.2010.7.1.001
- Mohammadhassani, M., Jumaat, M.Z., Jameel, M. and Ashour, A. (2011a), "An experimental investigation of the stress-strain distribution and modulus of rupture in high strength concrete deep beams", Eng. Fail. Anal., 18, 2272-2281. https://doi.org/10.1016/j.engfailanal.2011.08.003
- Mohammadhassani, M., Jumaat, M.Z., Chemrouk, M., Maghsoudi, A.A., Jameel, M. and Akib, S. (2011b), "An experimental investigation on bending stiffness and neutral axis depth variation of over-reinforced high strength concrete beams", Nucl. Eng. Des., 241(6), 2060-2067. https://doi.org/10.1016/j.nucengdes.2011.02.022
- Mohammadhassani, M., Jumaat, M.Z. and Jameel, M. (2012a), "Experimental investigation to compare the modulus of rupture in high strength self compacting concrete deep beams and high strength concrete normal beams", Constr. Build. Mater., 30, 265-273. https://doi.org/10.1016/j.conbuildmat.2011.12.004
- Mohammadhassani, M., Jumaat, M.Z., Jameel, M. and Arumugam Arul, M.S. (2012b), "Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation", 10.1016/j.nucengdes.2012.05.005.
- Mohebbi, A., Shekarchi, M., Mahoutian, M. and Mohebbi, S.(2011), "Modelling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network", Comput. Concrete, 8(3), 279-292. https://doi.org/10.12989/cac.2011.8.3.279
- Parichatprecha, R. and Nimityongskul, P. (2009), "An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks", Comput. Concrete, 6(3), 253-268. https://doi.org/10.12989/cac.2009.6.3.253
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2010), "Neural networks for inelastic mid-span deflections in continuous composite", Struct. Eng. Mech., 36(2), 165-179. https://doi.org/10.12989/sem.2010.36.2.165
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2011), "Prediction of moments in composite frames considering cracking and time effects using neural network models", Struct. Eng. Mech., 39(2), 267-285. https://doi.org/10.12989/sem.2011.39.2.267
- Perera, R., Barchín, M., Arteaga, A.D. and Diego, A. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B., 41(4), 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003
- Perera, R. and Vique, J. (2009), "Strut-and-tie modelling of reinforced concrete beams using genetic algorithms optimization", Constr. Build. Mater., 23(8), 2914-2925. https://doi.org/10.1016/j.conbuildmat.2009.02.016
- Pimentel, M., Cachim, P. and Figueiras, J. (2008), "DEEP-BEAMs with indirect supports: numerical modelling and experimental assessment", Comput. Concrete, 5(2), 117-134. https://doi.org/10.12989/cac.2008.5.2.117
- Rafat, S., Paratibha, A. and Yogesh, A. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", doi:10.1016/j.advengsoft. 05.016
- Rajasekharan, S. and Vijayalakshmi, P.G.A. (2003), "Neural networks, fuzzy logic and genetic algorithms", (New Delhi: Prentice Hall)
- Ray, S.P. (1980), "Behaviour and ultimate shear strength of reinforced concrete deep beams with and without opening in web", PhD thesis, Indian Institute of Technology, Kharagpur, India.
- Rigoti, M. (2002), "Diagonal cracking in reinforced concrete deep beam-An experimental investigation, PhD Thesis", Concordia University, Montreal, Quebec, Canada .
- Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate strength of reinforced concrete deep beams by neural networks", ASCE J. Struct. Eng., 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
- Saridakis, K.M., Chasalevris, A.C., Papadopoulos, C.A. and Dentsoras, A.J. (2008), "Applying neural networks, genetic algorithms and fuzzy logic for the identification of cracks in shafts by using coupled response measurements", Comput. Struct., 86(11-12),1318-1338. https://doi.org/10.1016/j.compstruc.2007.08.004
- Schlaich, J. and Schäfer, K. (1991), "Design and detailing of structural concrete using strut-and-tie models", Struct. Eng., 69(6), 113-125.
- Sonmez, M. and Aydin Komur, M. (2010), "Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load", Struct. Eng. Mech., 34(2), 159-174. https://doi.org/10.12989/sem.2010.34.2.159
- Yang, K.H., Chung, H.S. and Ashour, A.F. (2007), "Influence of section depth on the structural behaviour of reinforced concrete continuous deep beams", Mag. Concrete Res., 59(8), 8575-8586.
- Yun, Y.M. (2005), "Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams", Comput. Concrete, 2(4), 267-291. https://doi.org/10.12989/cac.2005.2.4.267
Cited by
- Explicit expression for effective moment of inertia of RC beams vol.12, pp.3, 2015, https://doi.org/10.1590/1679-78251272
- An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups vol.14, pp.5, 2014, https://doi.org/10.12989/sss.2014.14.5.785
- Rapid prediction of long-term deflections in composite frames vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.547
- Closed-form expressions for long-term deflections in high-rise composite frames vol.17, pp.1, 2017, https://doi.org/10.1007/s13296-016-0115-7
- Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams vol.46, pp.6, 2013, https://doi.org/10.12989/sem.2013.46.6.853
- Rapid prediction of deflections in multi-span continuous composite bridges using neural networks vol.15, pp.4, 2015, https://doi.org/10.1007/s13296-015-1211-9
- Applications of the ANFIS and LR in the prediction of strain in tie section of concrete deep beams vol.12, pp.3, 2013, https://doi.org/10.12989/cac.2013.12.3.243
- Moisture damage evaluation in SBS and lime modified asphalt using AFM and artificial intelligence vol.28, pp.1, 2017, https://doi.org/10.1007/s00521-015-2041-6
- An automated computationally efficient two-stage procedure for service load analysis of RC flexural members considering concrete cracking vol.33, pp.3, 2017, https://doi.org/10.1007/s00366-016-0496-4
- Moisture Damage Modeling in Lime and Chemically Modified Asphalt at Nanolevel Using Ensemble Computational Intelligence vol.2018, pp.1687-5273, 2018, https://doi.org/10.1155/2018/7525789
- Application of artificial neural networks to predict the deflections of reinforced concrete beams vol.38, pp.2, 2013, https://doi.org/10.1515/sgem-2016-0017
- Rapid prediction of inelastic bending moments in RC beams considering cracking vol.18, pp.6, 2013, https://doi.org/10.12989/cac.2016.18.6.1113
- Neural network based approach for rapid prediction of deflections in RC beams considering cracking vol.19, pp.3, 2013, https://doi.org/10.12989/cac.2017.19.3.293
- Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors vol.64, pp.4, 2013, https://doi.org/10.12989/sem.2017.64.4.437
- Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network vol.1, pp.11, 2019, https://doi.org/10.1007/s42452-019-1504-2
- Neural Networks-Deflection Prediction of Continuous Beams with GFRP Reinforcement vol.11, pp.8, 2021, https://doi.org/10.3390/app11083429
- On the Application of Machine Learning in Savonius Wind Turbine Technology: An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming vol.144, pp.6, 2013, https://doi.org/10.1115/1.4051736