• Title/Summary/Keyword: navigation signal

Search Result 1,046, Processing Time 0.022 seconds

Design of Physical Layer and Performance Analysis for MX-S2X, Ship Centric Direct Communication with the Mitigation of Multi-path Fading on Sea Environment (해상 다중경로 페이딩 극복을 위한 선박중심 직접통신(MX-S2X) 물리계층 설계 및 성능 분석)

  • Ryu, Hyung-Jick;Yoo, Hae-Sun;Kim, Won-Yong;Kim, Bu-Young;Shim, Woo-Seong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.352-359
    • /
    • 2021
  • This paper presents the definition and importance of ship-centric direct communication concerning ship safety of maritime autonomous and unmanned ships. It also proposes the concept of MX-S2X communication based on high frequency for wide-bandwidth technology and describes the design and simulation result for the physical layer of MX-S2X. It considered high-speed communication as well as overcoming maritime multi-path fading required to be resolved in the marine environment. The physical layer of MX-S2X communication was designed to overcome the occurrence of error-floor caused by multi-path fading even with receiving sufficient signal strength. To this purpose, a performance analysis was conducted on the physical layer by applying the channel model of the actual maritime communication environment. As a result of the performance analysis of the MX-S2X physical layer, it was confirmed that the BER error-floor observed in the VDE physical layer test was overcome, and it operated within the SNR 2dB degradation range compared to the AWGN channel. It is expected that this will show enough performance suitable for short-distance ship-centered direct communication and can be used for direct communication of maritime autonomous ships, unmanned ships, and group navigation of themshortly.

A Study on Establishment of Discrimination Model of Big Traffic Accident (대형교통사고 판별모델 구축에 관한 연구)

  • 고상선;이원규;배기목;노유진
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.101-112
    • /
    • 1999
  • Traffic accidents increase with the increase of the vehicles in operation on the street. Especially big traffic accidents composed of over 3 killed or 20 injured accidents with the property damage become one of the serious problems to be solved in most of the cities. The purpose of this study is to build the discrimination model on big traffic accidents using the Quantification II theory for establishing the countermeasures to reduce the big traffic accidents. The results are summarized as follows. 1)The existing traffic accident related model could not explain the phenomena of the current traffic accident appropriately. 2) Based on the big traffic accident types vehicle-vehicle, vehicle-alone, vehicle-pedestrian and vehicle-train accident rates 73%, 20.5% 5.6% and two cases respectively. Based on the law violation types safety driving non-fulfillment center line invasion excess speed and signal disobedience were 48.8%, 38.1% 2.8% and 2.8% respectively. 3) Based on the law violation types major factors in big traffic accidents were road and environment, human, and vehicle in order. Those factors were vehicle, road and environment, and human in order based on types of injured driver’s death. 4) Based on the law violation types total hitting and correlation rates of the model were 53.57% and 0.97853. Based on the types of injured driver’s death total hitting and correlation rates of the model were also 71.4% and 0.59583.

  • PDF

Indoor Mobile Robot Heading Detection Using MEMS Gyro North Finding Approach (MEMS Gyro North Finding 방법을 이용한 실내 이동로봇의 전방향 탐지)

  • Wei, Yuan-Long;Lee, Min-Cheol;Kim, Chi-Yen
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.334-343
    • /
    • 2011
  • This paper presents a new approach for mobile robot heading detection using MEMS Gyro north finding method in the indoor environment. Based on this, the robot heading angle measurement scheme is proposed; improved north finding theory and algorithm are also explained. Several approaches are applied to confirm system's precision and effectiveness. In order to find out the heading angle, a single axis MEMS gyroscope to sense the angle between the robot heading direction and the north is used. To reach enough estimation accuracy and reduce detection time, the least square method (LSM) for the signal fitting and parameter estimation is applied. Through a turn-table, we setup a carouseling system to decrease the substantial bias effect on gyroscope's heading angle. For the evaluation of the proposed method, this system is implemented to the Pioneer robot platform. The performance and heading error are analyzed after the test. From the simulation and experimental results, system's accuracy, usefulness and adaptability are shown.

Multimedia Information and Authoring for Personalized Media Networks

  • Choi, Insook;Bargar, Robin
    • Journal of Multimedia Information System
    • /
    • v.4 no.3
    • /
    • pp.123-144
    • /
    • 2017
  • Personalized media includes user-targeted and user-generated content (UGC) exchanged through social media and interactive applications. The increased consumption of UGC presents challenges and opportunities to multimedia information systems. We work towards modeling a deep structure for content networks. To gain insights, a hybrid practice with Media Framework (MF) is presented for network creation of personalized media, which leverages the authoring methodology with user-generated semantics. The system's vertical integration allows users to audition their personalized media networks in the context of a global system network. A navigation scheme with dynamic GUI shifts the interaction paradigm for content query and sharing. MF adopts a multimodal architecture anticipating emerging use cases and genres. To model diversification of platforms, information processing is robust across multiple technology configurations. Physical and virtual networks are integrated with distributed services and transactions, IoT, and semantic networks representing media content. MF applies spatiotemporal and semantic signal processing to differentiate action responsiveness and information responsiveness. The extension of multimedia information processing into authoring enables generating interactive and impermanent media on computationally enabled devices. The outcome of this integrated approach with presented methodologies demonstrates a paradigmatic shift of the concept of UGC as personalized media network, which is dynamical and evolvable.

Real-Time Implementation of the Navigation Parameter Extraction from the Aerial Image Sequence (항공영상을 이용한 항법변수 추출 알고리듬의 실시간 구현)

  • 박인준;신상윤;전동욱;김관석;오영석;이민규;김인철;박래홍;이상욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.489-492
    • /
    • 2000
  • 본 논문에서는 영상 항법 변수 추출 알고리듬의 실시간 구현에 관해 연구하였다. 영상 항법 변수 추출 알고리듬은 이전 위치를 기준으로 현재 위치를 추정해내는 상대위치 추정 알고리듬과 상대위치 추정에 의해 누적되는 오차를 보정하기 위한 절대위치 보정 알고리듬으로 구성된다. 절대위치 보정 알고리듬은 고해상도 영상과 IRS (Indian Remote Sensing) 위성영상을 기준영상으로 이용하는 방법 및 DEM (Digital Elevation Model) 을 이용하는 방법으로 구성된다. 하이브리드 영상 항법 변수 추출 알고리듬을 실시간으로 구현하기 위해 MVP (Multimedia Video Processor)로 명명된 TMS320C80 DSP (Digital Signal Processor) 칩을 사용하였다. 구현된 시스템은 MVP의 부동 소수점 프로세서인 MP (Master Processor) 를 고정 소수점 프로세서인 PP (Parallel Processor) 를 제어하거나 삼각함수 계산과 같은 부동 소수점 함수를 계산하는데 사용하였고, 대부분의 연산은 PP를 사용하여 수행하였다. 처리시간이 많이 필요한 모듈에 대해서는 고속 알고리듬을 개발하였고, 4개의 PP를 효율적으로 사용하기 위한 영상분할 방법에 대해 제안하였다. 비행체에서 캡코더를 이용해 촬영한 연속 항공 영상과 비행체의 자세정보를 입력으로 실시간 시뮬레이션 하였다. 실험결과는 하이브리드 항법 변수 추출 알고리듬의 실시간 구현이 효과적으로 구현되었음을 나타내고 있다.

  • PDF

Recent Development Trends of Fiber Optic Gyroscope in Space Application (우주용 광섬유자이로 개발동향)

  • Jung, Dong-Won;Kim, Jeong-Yong;Oh, Jun-Seok;Roh, Woong-Rae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.76-85
    • /
    • 2010
  • This paper discusses recent development trends of fiber optic gyroscope (FOG) in space application. Fiber optic gyroscope utilizes Sagnac effect to measure the angular rate of a rotating object in space. Having a rather short development history compared to ring laser gyroscope (RLG), the fiber optic gyroscope, owing to the emerging technologies in fiber optic society and the digital signal processing technique, reveals itself as a noteworthy replacement of the ring laser gyroscope in the space mission. This paper summarizes the current trends of fiber optic gyroscope based on the actual products commercialized in the market over the last decades, while presenting the future development trends of the fiber optic gyroscope in the space exploration.

  • PDF

Study on Location Estimation of Nearby Ships from Whistle Blast(1) (선박 기적음을 활용한 위치추정 시스템 개발(1))

  • Roh, Chang-Su;Do, Sung-Chan;Lee, Jong-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • Collisions of nearby ships are reported frequently because of bad weathers. A lot of efforts, using radar warning or other navigation security devices, were given to reduce the collisions, but the number of accidents could not be reduced. The main cause is that the ship personel are not watching carefully. In the paper, we propose a novel technique estimating the locations of nearby ships from their whistle blast and delivering the location information using mobile phones. We realized the technique using LabVIEW and showed its usefulness.

Development of a Driving Simulator for Telematics Human-Machine Interface Studies (텔레매틱스 HMI 연구를 위한 드라이빙 시뮬레이터의 개발)

  • Koo, Tae-Yun;Kim, Bae-Young;Shin, Hee-Jong;Son, Young-Tak;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.16-23
    • /
    • 2009
  • Driving simulators are useful tools not only to test the components of future cars but also to evaluate the telematics service and HMI (Human-Machine Interface). However driving simulators cannot be implemented to test and evaluate the telematics service system because the GPS (Global Positioning System) which contains basic functional support for the telematics module do not work in the VR (virtual reality) environment. This paper presents a method to implement telematics service to a driving simulator by developing the GPS simulator which is able to emulate GPS satellite signals consist of NMEA-0183 protocol and RS232C communication standards. It is expected that the driving simulator with the GPS simulator can be used to study HMI and human-factor evaluations of the commercial telematics system to realize the HiLES (Human-in-the-Loop Evaluation System).

Unmanned Aerial Vehicle Recovery Using a Simultaneous Localization and Mapping Algorithm without the Aid of Global Positioning System

  • Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.98-109
    • /
    • 2010
  • This paper deals with a new method of unmanned aerial vehicle (UAV) recovery when a UAV fails to get a global positioning system (GPS) signal at an unprepared site. The proposed method is based on the simultaneous localization and mapping (SLAM) algorithm. It is a process by which a vehicle can build a map of an unknown environment and simultaneously use this map to determine its position. Extensive research on SLAM algorithms proves that the error in the map reaches a lower limit, which is a function of the error that existed when the first observation was made. For this reason, the proposed method can help an inertial navigation system to prevent its error of divergence with regard to the vehicle position. In other words, it is possible that a UAV can navigate with reasonable positional accuracy in an unknown environment without the aid of GPS. This is the main idea of the present paper. Especially, this paper focuses on path planning that maximizes the discussed ability of a SLAM algorithm. In this work, a SLAM algorithm based on extended Kalman filter is used. For simplicity's sake, a blimp-type of UAV model is discussed and three-dimensional pointed-shape landmarks are considered. Finally, the proposed method is evaluated by a number of simulations.

Generation of Klobuchar Coefficients for Ionospheric Error Simulation

  • Lee, Chang-Moon;Park, Kwan-Dong;Ha, Ji-Hyun;Lee, Sang-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • An ionospheric error simulation is needed for creating precise Global Positioning System (GPS) signal using GPS simulator. In this paper we developed Klobuchar coefficients n ${\alpha}_n$ and ${\beta}_n$ (n = 1, 2, 3, 4) generation algorithms for simulator and verified accuracy of the algorithm. The algorithm extract those Klobuchar coefficients from broadcast (BRDC) messages provided by International GNSS Service during three years from 2006 through 2008 and curve-fit them with sinusoidal and linear functions or constant. The generated coefficients from our developed algorithms are referred to as MODL coefficients, while those coefficients from BRDC messages are named as BRDC coefficients. The maximum correlation coefficient between MODL and BRDC coefficients was found for ${\alpha}_2$ and the value was 0.94. On the other hand, the minimum correlation was 0.64 for the case of ${\alpha}_1$. We estimated vertical total electron content using the Klobuchar model with MODL coefficients, and compared the result with those from the BRDC model and global ionosphere maps. As a result, the maximum RMS was 3.92 and 7.90 TECU, respectively.