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The unmanned aerial vehicle (UAV) recovery method, 

especially for an emergency situation, is an important 

issue in the UAV research community. The reliability and 

survivability in the case of an unexpected emergency 

situation, such as global positioning system (GPS) jamming, 

are critical problems in the operation of UAVs because 

they are equipped with high-cost devices, such as inertial 

navigation system (INS), flight control computer (FCC), 

vision systems, and so on.

In UAV applications, the navigation system can be 

categorized two types: inertial navigation and reference-

based navigation. An INS provides the vehicle’s position, 

velocity, and attitude from a dead-reckoning measurement 

of the vehicle’s acceleration and rotational rate. It is evident 

that INS outputs are more inaccurate with the passage of 

time due to the integration process of a dead-reckoning 

measurement. In other words, INS has a diverging-error 

characteristic, which renders the vehicle unstable. While 

GPS gives a vehicle’s position accurately, it also offers long-

term stability. However, the main drawback is its dependency 

on satellite signals, which can be easily jammed by some 

interference.

Nowadays, an INS/GPS integrated system is suggested to 

increase the accuracy of navigation systems. However, an 

INS/GPS integrated system also can frequently suffer from 

GPS jamming. In this case, accurate navigation is impossible 

due to the diverging-error characteristic of INS. Then, such 

inaccurate vehicular state information can make a vehicle 

unstable. At worst, it could be a cause of UAV crash on the 

ground. In such an emergency situation, the UAV needs to 

return to its base to save itself without the aid of GPS. This is 

a critical problem in the operation of UAVs.
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Abstract

This paper deals with a new method of unmanned aerial vehicle (UAV) recovery when a UAV fails to get a global positioning 

system (GPS) signal at an unprepared site. The proposed method is based on the simultaneous localization and mapping 

(SLAM) algorithm. It is a process by which a vehicle can build a map of an unknown environment and simultaneously use this 

map to determine its position. Extensive research on SLAM algorithms proves that the error in the map reaches a lower limit, 

which is a function of the error that existed when the first observation was made. For this reason, the proposed method can help 

an inertial navigation system to prevent its error of divergence with regard to the vehicle position. In other words, it is possible 

that a UAV can navigate with reasonable positional accuracy in an unknown environment without the aid of GPS. This is the 

main idea of the present paper. Especially, this paper focuses on path planning that maximizes the discussed ability of a SLAM 

algorithm. In this work, a SLAM algorithm based on extended Kalman filter is used. For simplicity’s sake, a blimp-type of UAV 

model is discussed and three-dimensional pointed-shape landmarks are considered. Finally, the proposed method is evaluated 

by a number of simulations.
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Many researchers have considered the UAV recovery 

method in emergency situations as discussed above. To 

handle this problem, they have proposed that the UAV 

immediately land at a nearby, safe region instead of 

returning to the base. Saripalli et al. (2002) proposes the 

idea of autonomous helicopter landing using a vision sensor 

when a UAV is placed in an emergency situation. It assumed 

that a helicopter can recognize the landing site. Theodore et 

al. (2006) and Bosch et al. (2006) suggest autonomous UAV 

landing at an unprepared site using stereo or mono visual 

sensors. However, they cannot provide a complete solution 

for UAV recovery. Although a UAV can land at an unprepared 

site without the aid of GPS, we should know exactly where 

it has landed to recover it. It is altogether another problem 

to recover a UAV. For this reason, we suggest a different 

approach for UAV recovery in this paper. Instead of landing 

at a nearby, safe region, we consider a method whereby the 

UAV returns to the base using a dead-reckoning INS without 

the aid of GPS. As mentioned above, using only INS, it is 

hard to make a UAV accurately return to its base. Therefore, 

we suggest a new navigation algorithm in conjunction with 

SLAM to replace the established navigation method.

Simultaneous localization and mapping (SLAM) 

(Durrant-Whyte and Bailey, 2006; Gamini Dissanayake et al. 

2001) is a popular method for robotics. It is the process by 

which a robot can build a map of an unknown environment 

and simultaneously use this map to compute its position. 

Extensive research on SLAM (Gamini Dissanayake et al. 2001) 

shows that the error of the map reaches a lower limit, which 

is a function of the error at the time of the first observation. 

For these reasons, a SLAM algorithm can help an INS-

based navigation system without the aid of GPS to prevent 

its error of divergence with regard to the vehicle position. 

Kim and Sukkarieh (2003) applied this method to UAVs, and 

demonstrated that an airborne SLAM was possible using only 

vision and INS sensors. Kim and Sukkarieh (2003) furnish 

the main idea and intuition for our study. We apply the 

concept of an airborne SLAM algorithm for the UAV recovery 

method. This can make it possible for a UAV to return to its 

base accurately. A SLAM algorithm can reduce the vehicular 

position and map uncertainties when re-observations are 

made. In a SLAM algorithm, the re-observation process 

increases the correlation between the map and the vehicle. 

It is an important and interesting characteristic of SLAM 

algorithms for mitigating the positional error. Especially in 

this paper, the proposed method focuses on path planning 

that maximizes the correlation between landmarks when 

a SLAM algorithm is used for a supplementary navigation 

system. The proposed path planning consists of several 

circular closed paths for using the re-observation process. 

When a UAV flies along the path proposed by a SLAM 

algorithm, the errors in the UAV positions are dramatically 

reduced. In this paper, a SLAM algorithm based on extended 

Kalman filter (EKF) is formulated. The detailed algorithm is 

covered in Bailey (2002). For simplicity’s sake, planar motion 

of a blimp-type UAV is considered and pointed-shape 

landmarks are introduced.

This paper consists of five sections. A general formulation 

of the problem considered is given in Sec. II. The SLAM 

algorithm based on EKF for our vehicle model is derived in 

Section 3. The proposed UAV recovery method, which focuses 

on path planning for use in the re-observation process, is 

described in Section 4. In Section 5, the proposed method 

is demonstrated and evaluated by a number of simulations. 

The final section concludes the paper.

2. Problem Description

2.1 Assumptions

It is well known that the full SLAM problem of UAVs is 

complex and difficult to handle. In spite of extensive research 

activities on SLAM-related problems, a complete solution 

is not determined as yet. As has been discussed above, this 

work deals with a new UAV recovery method that is focused 

on path planning and not a SLAM algorithm itself. Therefore, 

we introduce some assumptions to avoid a waste of effort. In 

Section 3, a simplified SLAM algorithm will be formulated 

under the following assumptions.

1) �A 3-DOF model, viz., planar motion of UAVs, is 

considered.   

2) �Three-dimensional, pointed-shape landmarks are used.

3) �Bearing and range measurements with noise are 

available. 

4) �Each landmark has its own ID. In the other words, data 

association is known. 

5) �Process and measurement noises are Gaussian.

6) A blimp-type of UAV model is used.

2.2 Vehicle Model

Unlike the case of ground vehicles, the stability of an aerial 

vehicle is highly dependent on the SLAM algorithm. If the 

SLAM algorithm is not working well, then an aerial vehicle 

may crash into the ground because the SLAM algorithm’s 

outputs are highly related to the vehicle’s stability. That is why 

an airborne SLAM is more difficult than other SLAM contexts 

such as ground robots and cars. To address the stability 

problem regarding aerial vehicles, a blimp-type model is 

considered in this paper. Then, three states are needed to 
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describe the motion of the vehicle because a planar motion 

of UAVs with a certain fixed altitude (100 m) is considered. In 

this vehicle model, the control inputs consist of the vehicle 

velocity and vehicle heading angle described in the left of 

Fig. 1. Each command is denoted by V and Δψ, respectively. 

These commands include the noise measurement. Then, the 

vehicle state is propagated by the following equations. These 

equations are given in Bailey (2002). They provide a detailed 

description of the vehicle model for a ground vehicle. In this 

paper, a reformulated equation of motion is used for UAVs.

	 .		 (1)

	 .		 (2)

	 . 		 (3)

In the above,

xk, yk : The vehicle position at time k. 

ψ k : The angle at which the vehicle is headed at time k.

wV : The velocity command noise, which is Gaussian. 
wψ : The heading command noise, which is Gaussian.

2.3 Observation Model

Landmarks are observed by a vehicle from a map in 

the same coordinate system as that defined in the vehicle 

model. As already discussed above, three-dimensional, 

point-shaped landmarks are used in this paper. Landmarks 

are observed by a sensor, which gives two noisy bearing 

measurements and a noisy range measurement between 

the vehicle and an observed landmark. This is shown in the 

right of Fig. 1. φ  represents an azimuth angle measurement 

and θ denotes the angle of elevation between the vehicle 

and the landmark. ρ  is the range measurement. It is already 

assumed in this work that these measurements are available. 

Then, the observation model is formulated as follows:

	 ,	 (4)

where
x y zv v v, , : The vehicle position. zy is a fixed altitude (100m). 
x y zi i i, , : The location of the ith landmark.
vr : �The range measurement noise, which is Gaussian 

noise. 
vφ : �The azimuth measurement noise, which is Gaussian 

noise.

vθ : �The elevation measurement noise, which is Gaussian 

noise.

   

Fig. 1. �The coordinate system for the vehicle and the observational 
model.

3. The SLAM Algorithm

3.1 Structure of SLAM

The SLAM process can be described as in Fig. 2. A 

vehicle starts in an unknown environment and makes a 

map, which it simultaneously uses for its navigation. The 

vehicle propagates using an inertial sensor measurement 

and the vehicle model as discussed in Section 2. When a 

measurement sensor detects landmarks from the unknown 

environment, these successive measurements are used to 

update the vehicle state in terms of the position, velocity, 

and attitude. Simultaneously, the updated vehicle state is 

used to update the constructed map.

The above approach is based on the fact that there are 

statistical correlations between a vehicle position and 

observed landmarks. These correlations increase when re-

observation is made using old landmarks. Therefore, when a 

vehicle flies along a closed path several times in an unknown 

environment, errors in the map reach a lower limit, which is 

a function of the error that existed when the first observation 

was made. This means that a vehicle can navigate using the 

SLAM algorithm with reasonable accuracy. The detailed 

SLAM process is described in Durrant-Whyte and Bailey 

(2006). In this section, we briefly explain the SLAM process 

as follows.
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Fig. 2. �A description of the simultaneous localization and mapping 
process.

The SLAM process,

Step 1: �A vehicle located at kx observes two landmarks, 

im  and jm , at time k.

Step 2: �A control input is applied to the vehicle; then, it 

moves to location 1kx + . It re-observes landmark 

jm ; this causes the estimated vehicle state and 

map to be updated.

Step 3: �Because observed landmarks are correlated with 

each other, an observation of landmark jm
 
is used 

to update the previous landmark, im .

Step 4: �New landmarks observed at location 1kx +  are 

linked to the rest of the map, viz., im  and jm .

Step 5: �The vehicle proceeds through an environment, 

and repeats step 1 to 4 to form a map and estimate 

its state. When re-observations are made, the 

correlations are increasing. This means that the 

map precision is increasing.

The SLAM problem can be described by probabilistic 

distributions. It is given below.

	  		 (5)

In Eq. (5), 

kx : The vehicle state at time k. 

: �The set of all landmarks in an 

environment.

: �The history of control inputs up to time 

k. 

: �The set of all landmark observations 

from the sensor up to time k. 

This probability distribution gives the joint posterior 

density of landmark locations and vehicle states at time k 

conditioned on the set of observations and control inputs 

up to time k along with the initial state. The probability 

distribution for vehicle motion and observation can be 

formulated by using the vehicle and observation model 

as provided in the previous section. The vehicle-state 

propagation is assumed to be a Markov process, which 

means that a current vehicle-state, xk, only depends on the 

previous state, x
k–1

, and not on the history of the vehicle state 

up to time k–1. The probabilistic form of vehicle motion can 

be expressed as below.

	 	 (6)

The observation model is defined by a likelihood density 

function, which describes the probability of making an 

observation given the vehicle states and landmarks.

	 		 (7)

The SLAM algorithm consists of two parts. One part is the 

time-update step and the other is the measurement-update 

step. It performs an iterative procedure for computing the 

joint posterior probability distribution. Detailed information 

can be found in Durrant-Whyte and Bailey (2006). The SLAM 

algorithm is briefly described below,

The time update process:

	

	  	 (8)

The measurement update process:

    	 (9)

3.2 Formulation of EKF-SLAM

The formulations of SLAM based on EKF for the vehicle 

model as described in the previous section are presented 

in this section. These formulations are provided in Bailey 

(2002). This work considers only two-dimensional equations 

for a ground vehicle; therefore, we reformulate the three-

dimensional SLAM equations for our purpose. The vehicle 

state-vector, Xv, is defined by the position and heading angle. 

They are estimated with mean and covariance, Pv , which 

is defined as below. Off-diagonal terms in the covariance 

matrix represent correlations between states.

	 .	 (10)

	 .	 (11)
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Three-dimensional, pointed-shape landmarks with 

covariances are defined as below.

	 . 	 (12)

	 . 	 (13)

Off-diagonal terms in the above covariance matrix 

represent correlations between landmarks. When a re-

observation process is made, these correlations will increase. 

SLAM states consist of vehicles and landmark states. These 

states are constructed by the augmented state vector as 

shown below.

	 . 	 (14)

	 . 	 (15)

In the above, aP denotes the error covariance matrix of 

the SLAM state. In the predictive step, vehicle states are 

propagated by using the vehicle model and an inertial sensor 

measurement as described above. The predicted SLAM 

states, ˆa
−x , and the error covariance, a

−P , are given as:

	  	 (16)

and

	 .  	 (17)

In the above,

Q: The control noise covariance matrix.

u: �The control inputs, which consist of the velocity, V, and 

the heading angle, ψ.

The Jacobian matrices of and  are defined as:

	   	 (18)

and

	 .     	 (19)

The Jacobian matrices of and
 

are given as follows.

	 .  	 (20)

	 .  	 (21)

In the update step, the measurements and the error 

covariance, R, are determined as:

	   	 (22)

and

	 . 	 (23)

The nonlinear relationship between the vehicle state and the 

observed ith landmark, , is shown as follows:

	 ,	 (24)

where zv denotes the altitude of the vehicle relative to the 

ground and has a constant value. The Kalman gain, Ki, can 

be expressed as:

	  	 (25)

	   	 (26)

and

	 . 	 (27)

In the above, the Jacobian, , is given as below.

. 

(28)
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In Eq. (28), 

: �The relative distance along the x-axis between 

the vehicle and a landmark.

: �The relative distance along the y-axis between 

the vehicle and a landmark.

: �The relative distance along the z-axis between 

the vehicle and a landmark.

. 

. 

The posterior SLAM estimate is subsequently given by the 

update equation as follows.

	 .	 (29)

	 .  	 (30)

When a new landmark is observed, it should be added to the 

SLAM state vector. This step is called state augmentation. 

The method for initializing new landmarks is shown below. 

A new observation, z, is inserted into the SLAM state vector. 

The augmented state and covariance matrix can be expressed 

as follows.

	 . 	 (31)

	 . 	 (32)

A new observation, z, which is defined in the polar coordinate 

system, should be transformed to the Cartesian coordinate 

system. This nonlinear transformation is performed by the 

function, gi, which is defined below.

	 . 	 (33)

The augmented SLAM state can be estimated by using the 

following equations.

	 . 	 (34)

	 .  	 (35)

In the above, the Jacobian, , is given by:

	 . 	 (36)

Also, the Jacobian,  and , are determined as follows.

	 . 	 (37)

	

	   .

(38)

4. The Proposed Method of UAV Recovery

The main idea of the proposed method is based on the 

ability of the SLAM algorithm, which constrains uncertainties 

in the vehicle position. Extensive research on SLAM shows 

that the error in the map reaches a lower limit, which is a 

function of the error that existed when the first observation 

was made. In Section V, we will demonstrate how to impact 

the errors regarding the UAV position and map, when the 

UAV re-observes already registered old landmarks. This result 

also was demonstrated by a real flight test in Bailey (2002) 

and gives a motivation for this work. Note that to reduce the 

uncertainty in the vehicle position, a re-observation process 

for old landmarks is recommended. This means that path 

planning is important to enhance the ability of the SLAM 

algorithm. Therefore, in this paper, the proposed method 

focuses on path planning to maximize the correlation 

between landmarks and minimize errors in the UAV position 

and map using the EKF-SLAM algorithm.

The proposed UAV recovery process is described below. In 

addition, Fig. 3 provides a flowchart of the process.

4.1 Process

STEP 1: Set a starting point in a map.

When a UAV equipped with an INS/GPS integrated 

navigation system flies in an unknown environment, the GPS 

is suddenly jammed by some interference. Then, we regard 

the final GPS position data as the starting point of the map.
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Fig. 3. �The flowchart of the proposed method. FOV: field of view, 
SLAM: simultaneous localization and mapping.

Fig. 4. The selection of the reference landmark.

Fig. 5. �A circular closed path that is centered on the reference 	
landmark.

Fig. 6. �The selection of a new starting point. SLAM: simultaneous  
localization and mapping.

STEP 2: Calculate the heading toward the base.

Next, we compute the heading toward the base. It is assumed 

that the absolute location of the base, , is given. 

From the starting point, , as determined in STEP 1, we 

can compute this heading angle as below.

	 . 	 (39)

STEP 3: �Set the reference landmark in FOV at the first 

observation.

To maximize correlations between landmarks, a re-

observation process is important. To fulfill this requirement, 

we introduce the reference landmark in the field of view 

(FOV) when the first observation is made. The reference 

landmark is defined by the nearest landmark from the base. 

It should exist in the current FOV. To maximize correlations 

between landmarks, the reference landmark should exist in 

FOV at all times when a UAV proceeds through an unknown 

environment. The underlying idea is to maximize the 

correlation between landmarks. Figure 4 shows the selection 

procedure for the reference landmark in FOV when the first 

observation is made.

Step 4: �Make a circular closed path, which is centered on the 

reference landmark. 

As mentioned in STEP 3, to maximize correlations between 

landmarks, the reference landmark should be laid on FOV 

when the UAV flies through an unknown environment. To 

satisfy this requirement, we suggest a circular closed path 

as described in Fig. 5. In this case, the radius of the circular 
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closed path is selected as the radius of the maximum FOV.

STEP 5: �Flight along the path and the simultaneous generation 

of a map using SLAM.

The UAV flies along the defined path and simultaneously 

makes a map using the SLAM algorithm. Section V will show 

the convergence of the uncertainty of a UAV position when 

old landmarks are re-observed. When the UAV returns to 

the starting point as defined in STEP 1, the errors in the UAV 

position and map are dramatically reduced. To mitigate the 

positional error by using a re-observation process, at least 

one rotation of a circular closed path is needed.

STEP 6: �Reset the starting point to the landmark as the nearest 

point from the base in the map constructed by STEP 5.

Then, the UAV sets the new starting point to the landmark 

as the nearest point from the base in the map constructed 

in STEP 5. Thereafter, STEPs 1 through 6 should be repeated. 

Through the above steps, the UAV can accurately proceed 

toward the base. This step is explained in Fig. 6. When the 

new starting point is selected, the map constructed by the 

previous step is deleted to relieve the computational load, 

which is generally proportional to the size of the map. Then, 

we rebuild a new map from the new starting point. 

The main advantage of the proposed method is that it can 

guarantee a bounded positional error without the aid of GPS. 

However, a certain amount of returning flight distance and 

time is recommended. Since the flight distance and time are 

limited by the specification of the power sources installed in 

the UAV, the proposed method requires a tradeoff between 

the flight distance and positional accuracy. A trajectory 

modification is employed as a remedy. To reduce the 

required flight distance and time, STEPs 3 to 4 should be 

modified. In this modification, the reference landmark is 

not needed. Therefore, the radius of the circular closed path 

does not depend on the reference landmark. This means 

that the radius of the circular closed path is increased 

but the correlation between landmarks is decreased. This 

explanation is described in Fig. 7.

If we use a modified circular closed path, some of recursive 

steps between 1 through 6 can be eliminated. Then, the total 

flight distance is reduced. In this modification, the remaining 

steps are the same except for Steps 3 and 4. Finally, the 

suggested trajectory is provided in Fig. 8, which describes 

the proposed recursive steps. When a UAV starts from the 

position where the GPS is jammed by some interference, 

it simultaneously builds a sub-map by using the SLAM 

algorithm along a trajectory, as described in Fig. 8. When the 

sub-map is constructed, the UAV starts to rebuild a new sub-

map from the new starting point. Then, the UAV flies toward 

the base by simultaneously using a recursively constructed 

sub-map. 

5. Simulation Results

The proposed method is evaluated and demonstrated 

by a number of simulations. The considered simulation 

parameters are listed in Table 1, which specifies the 

measurement sensor and inertial measurement unit (IMU). 

As mentioned in the previous section, we assumed that the 

UAV proceeds at a fixed altitude (100 m is recommended) with 

an average velocity of 5 m/s in the following simulations.

Fig. 7. �Modified circular closed path to reduce the required flight 
path. Fig. 8. A description of the entire process of the proposed method.
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Table 1. Simulation parameters

Sensor Content Unit Specification

IMU

Sampling rate Hz 40

Velocity noise m/s 0.2

Heading noise Deg 2

Max. heading command Deg 30

Max. heading command rate Deg/s 20

Bearing

(vision)

Frame rate Hz 5

FOV angle (half) Deg 20

Range noise strength m 0.2

Yaw bearing noise Deg 0.16

Pitch bearing noise Deg 0.12

IMU: inertial measurement unit, FOV: field of view.

The simulation studies consist of three parts. First, the 

convergence behavior of the UAV position and map using 

the SLAM algorithm is determined. The estimation accuracy 

is seen to be highly related to the re-observation process 

in the SLAM algorithm. The second simulation yields the 

results of the following scenario. The UAV returns to the 

base using INS without the aid of GPS when it is placed in 

an emergency situation especially due to GPS jamming. 

The third simulation is performed to demonstrate the per-

formance of the proposed UAV recovery method using the 

SLAM algorithm in the same situation as in Simulation 2.

5.1 Simulation 1: The convergence behavior of the 
map and UAV position

As discussed above, extensive research on SLAM shows 

that the error in the map reaches a lower limit, which is a 

function of the error that existed when the first observation 

was made. This particular simulation is performed to show 

the converging error behavior regarding a UAV’s position 

and map when the UAV re-observes old landmarks. To 

measure the error in the estimated UAV and landmark 

positions, the RMS error is used. It is defined by the square 

root of the positional error. In this simulation, we consider 

that a UAV flies along the same circular closed path five 

times. Simulation results are evaluated by the EKF-SLAM 

algorithm. Fig. 9 shows the converging error behavior of the 

UAV position and map while the UAV flies along a circular 

closed path several times. The RMS errors of the UAV position 

and map are shown in Fig. 9. When the UAV proceeds along 

a closed path the first time, the error value is increased. 

Then, re-observations are made in the second loop. At this 

moment, the accuracy of estimation is improved. These 

results reveal why re-observation is important when the 

SLAM algorithm is performed for UAV navigation systems. 

Also, the results confirm that the errors in the UAV position 

and map are limited below a certain level. This fact is a key 

characteristic of SLAM algorithms and gives the main idea 

of our work. In addition, to evaluate the SLAM algorithm, we 

perform the same simulation when the UAV only uses INS 

data without the aid of GPS. Figure 11 shows an INS diverging 

error characteristic when the UAV flies along a circular closed 

path without the support of the SLAM algorithm. In this 

simulation, the RMS error of the UAV position is increased 

while the UAV proceeds along a circular closed path due to 

noisy measurements of the INS output. These results show 

that the SLAM algorithm can prevent an INS diverging error 

when the UAV re-observes old landmarks. This is the main 

idea of this paper for a UAV recovery method without the aid 

of GPS for an emergency situation.

	

Fig. 9. �Root mean square (RMS) errors of an unmanned aerial vehicle position and map (EKF-SLAM). 
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                                                                                   Fig. 10. Flight trajectory (EKF-SLAM). 

	

Fig. 11. �Root mean square (RMS) errors of the unmanned aerial vehicle position and the flight trajectory using only INS.

	

Fig. 12. �Root mean square (RMS) errors of the vehicle position and the vehicle flight trajectory using only inertial navigation system. 

	

Fig. 13. �Root mean square (RMS) errors of the vehicle position and map using the proposed method based on EKF-SLAM. 
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Fig. 14. �The flight trajectory of the proposed method based on  
EKF-SLAM. 

5.2 Simulation 2: The UAV returns to the base using 
INS without the aid of GPS

This simulation result also shows an INS diverging error 

characteristic when the UAV returns to the base from some 

unknown location without the aid of GPS. In that situation, 

the UAV proceeds by depending only on a dead-reckoning 

INS. In this simulation, we set the origin of the map relative 

to the starting point, which is the place where the GPS signal 

is jammed by some interference. It is assumed that the 

UAV’s base is located at (353.5, 353.5) m. The initial relative 

distance between the UAV and the base is 500 m. Then, we 

consider the problem as how to make the UAV return to the 

base when it is placed in the discussed emergency situation 

without the aid of GPS. In this situation, it is assumed that the 

UAV directly flies along the line from (0, 0) to (353.5, 353.5) 

m. The results are provided in Fig. 12 as shown below.  The 

left side of Fig. 12 shows the RMS errors of the UAV, while the 

right side of Fig. 12 gives the flight trajectory of the UAV.

5.3 Simulation 3: The demonstration of the proposed 
method of UAV recovery for an emergency situ-
ation using the SLAM algorithm without the aid 
of GPS

In this simulation, we demonstrate how much the 

proposed method improves upon the UAV positional error 

when the UAV is placed in the same situation as mentioned 

in Simulation 2. To compare with the case of Simulation 2, 

this simulation is performed under the same conditions. As 

mentioned in Sec. IV, the proposed method focuses on path 

planning by maximizing the correlation between landmarks 

and simultaneously minimizing the errors in the UAV position 

and map by using the EKF-SLAM algorithm. In Simulation 3, 

we obtain the behavior of the UAV’s positional error while 

the UAV flies along the proposed path from (0, 0) to (353.5, 

353.5) m by using the EKF-SLAM algorithm. The results are 

given in Figs. 13 and 14. The root mean square error of the 

UAV position is provided in Fig. 13. It can be easily seen that 

this value is bounded below 2 m at the base location (final 

point). In Simulation 2, this value is recorded near 36 m. 

Compared with Simulation 2, a significant improvement in 

the estimated UAV position is seen through the proposed 

method. In Fig. 13, it is also seen that the error in the UAV 

position is increased slightly according to the time increment. 

In the recursive step of the proposed method, the new 

starting point is selected from landmarks in a constructed 

sub-map, which has a certain extent of landmark positional 

errors. The proposed method rebuilds a sub-map from the 

new starting point that contains some error. Therefore, the 

error is accumulated. This clearly explains why the error in 

the UAV position is increased at the final position. However, 

the amount of this error is very small compared to the results 

of Simulation 2.

6. Conclusions

Section V provides a simulation result of the proposed 

UAV recovery method for an emergency situation that is 

especially for GPS jamming. The proposed method consists 

of path planning and a SLAM algorithm to reduce the error 

in the UAV position while the UAV flies along the proposed 

path. The proposed method is successfully demonstrated 

by a number of simulations. From the results, the proposed 

method can be seen to limit a UAV’s positional uncertainty 

while the UAV returns to the base in a discussed emergency 

situation by depending only on the SLAM algorithm and 

a dead-reckoning INS for its navigation system. In the 

final conclusion, the proposed method can make a UAV 

successfully return to the base in an emergency situation 

without the aid of GPS.
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