• Title/Summary/Keyword: navier-stokes

Search Result 2,172, Processing Time 0.032 seconds

DERIVATION OF THE g-NAVIER-STOKES EQUATIONS

  • Roh, Jaiok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.213-218
    • /
    • 2006
  • The 2D g-Navier-Stokes equations are a certain modified Navier-Stokes equations and have the following form, $$\frac{{\partial}u}{{\partial}t}-{\nu}{\Delta}u+(u{\cdot}{\nabla})u+{\nabla}p=f$$, in ${\Omega}$ with the continuity equation ${\nabla}{\cdot}(gu)=0$, in ${\Omega}$, where g is a suitable smooth real valued function. In this paper, we will derive 2D g-Navier-Stokes equations from 3D Navier-Stokes equations. In addition, we will see the relationship between two equations.

  • PDF

Temperature Preconditioning for Improving Convergence Characteristics in Calculating Low Mach Number Flows, II: Navier-Stokes Equations (저속 유동 계산의 수렴성 개선을 위한 온도예조건화 II: 나비어스톡스 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1075-1081
    • /
    • 2007
  • The temperature preconditioning is applied to the Navier-Stokes equations. Also, a new concept of diffusion Mach numbers is introduced to modify the reference Mach number for the Navier-Stokes equations. Flows over a circular cylinder were calculated at different Reynolds numbers. It is shown that the temperature preconditioning improves the convergence characteristics of Navier-Stokes equations. Also, it is shown that the modified reference Mach number alleviates the convergence problems at locally low speed regions.

A Comparison Study Between Navier-Stokes Equation and Reynolds Equation in Lubricating Flow Regime

  • Song, Dong-Joo;Seo, Duck-Kyo;William W. Schultz
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.599-605
    • /
    • 2003
  • For practical calculations, the Reynolds equation is frequently used to analyze the lubricating flow. The full Navier-Stokes Equations are used to find validity limits of Reynolds equation in a lubricating flow regime by result comparison. As the amplitude of wavy upper wall increased at a given average channel height, the difference between Navier-Stokes and lubrication theory decreased slightly : however, as the minimum distance in channel throat increased, the differences in the maximum pressure between Navier-Stokes and lubrication theory became large.

THE GLOBAL ATTRACTOR OF THE 2D G-NAVIER-STOKES EQUATIONS ON SOME UNBOUNDED DOMAINS

  • Kwean, Hyuk-Jin;Roh, Jai-Ok
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.731-749
    • /
    • 2005
  • In this paper, we study the two dimensional g-Navier­Stokes equations on some unbounded domain ${\Omega}\;{\subset}\;R^2$. We prove the existence of the global attractor for the two dimensional g-Navier­Stokes equations under suitable conditions. Also, we estimate the dimension of the global attractor. For this purpose, we exploit the concept of asymptotic compactness used by Rosa for the usual Navier-Stokes equations.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN HETEROGENEOUS MEDIA

  • Pak, Hee Chul
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.335-347
    • /
    • 2006
  • The homogenization of non-stationary Navier-Stokes equations on anisotropic heterogeneous media is investigated. The effective coefficients of the homogenized equations are found. It is pointed out that the resulting homogenized limit systems are of the same form of non-stationary Navier-Stokes equations with suitable coefficients. Also, steady Stokes equations as cell problems are identified. A compactness theorem is proved in order to deal with time dependent homogenization problems.

  • PDF

COMPARISON OF COUPLING METHODS FOR NAVIER-STOKES EQUATIONS AND TURBULENCE MODEL EQUATIONS (Navier-Stokes 방정식과 난류모델 방정식의 연계방법 비교)

  • Lee, Seung-Soo;Ryu, Se-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.111-116
    • /
    • 2005
  • Two coupling methods for the Navier-Stokes equations and a two-equation turbulence model equations are compared. They are the strongly coupled method and the loosely coupled method. The strongly coupled method solves the Navier-Stokes equations and the two-equation turbulence model equations simultaneously, while the loosely coupled method solves the Navier-Stokes equation with the turbulence viscosity fixed and subsequently solves the turbulence model equations with all the flow quantities fixed. In this paper, performances of two coupling methods are compared for two and three-dimensional problems.

  • PDF

Thermodynamic Study on the Limit of Applicability of Navier-Stokes Equation to Stationary Plane Shock-Waves (정상 평면충격파에 대한 Navier-Stokes 방정식의 적용한계에 관한 열역학적 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.409-414
    • /
    • 1996
  • The limit of applicability of Navier-Stokes equation to stationary plane shock-waves is examined by using the principle of minimum entropy production of linear irreversible thermodynamics. In order to obtain analytic results, the equation is linearized near the equilibrium of downstream. Results show that the solution of Navier-Stokes equation which fits the boundary condition of far downstream flow is consistent with the thermodynamic requirement within the first order when the solution is expanded around the M=1, where M is the Mach number of upstream speed.

  • PDF

Calculation of two-dimensional incompressible separated flow using parabolized navier-stokes equations (부분 포물형 Navier-Stokes 방정식을 이용한 비압축성 이차원 박리유동 계산)

  • 강동진;최도형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.755-761
    • /
    • 1987
  • Two-Dimensional incompressible laminar boundary layer with the reversed flow region is computed using the parially parabolized Navier-Stokes equations in primitive variables. The velocities and the pressure are explicity coupled in the difference equation and the resulting penta-diagonal matrix equations are solved by a streamwise marching technique. The test calculations for the trailing edge region of a finite flat plate and Howarth's linearly retarding flows demonstrate that the method is accurate, efficient and capable of predicting the reversed flow region.