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DERIVATION OF THE g-NAVIER-STOKES EQUATIONS

Jaiok Roh*

Abstract. The 2D g-Navier-Stokes equations are a certain modi-
fied Navier-Stokes equations and have the following form,

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f , in Ω

with the continuity equation

∇ · (gu) = 0, in Ω,

where g is a suitable smooth real valued function. In this paper,
we will derive 2D g-Navier-Stokes equations from 3D Navier-Stokes
equations. In addition, we will see the relationship between two
equations.

1. Introduction

By concerning the reaction-diffusion and damped wave equations on
thin domains, Hale and Raugel([1], [2], [3]) originated the study of the
Navier-Stokes equations on thin domains.

In [4] and [5], Raugel and Sell proved global existence of strong so-
lutions for large initial data and forcing terms in thin three dimensional
domains for the purely periodic boundary conditions and the periodic-
Dirichlet boundary conditions, that is, periodic conditions in the thin
vertical direction and homogeneous Dirichlet conditions on the lateral
boundary condition Γl = ∂Ω× (0, ε), where Ω ⊂ R2.

An essential tool in their proof is the vertical mean operator M , which
allows the decomposition of every function U on Ωε = Ω × (0, ε) into
the sum of a function MU = v(x1, x2) which does not depend on the
vertical variable, and a function (I − M)U = w(x1, x2, x3), with van-
ishing vertical mean and thus to use more precise Sobolev and Poincaré
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inequalities. Then, they showed that the reduced 3D Navier-Stokes evo-
lutionary equations by v incorporates the 2D Navier-Stokes equations on
Ω. Later, by using same tool as Raugel and Sell with improved Agmon
inequalities, Temam and Ziane([6], [7]) generalized the results of ([4],
[5]) to other boundary conditions and, in the case of the free boundary
conditions, to thin spherical domains.

In this paper, we apply Raugel and Sell methods on Ωg = Ω2× (0, g),
where Ω2 is a bounded region in the plane and g = g(x1, x2) is a smooth
function defined on Ω2 with 0 < m ≤ g(x1, x2) ≤ M , for (x1, x2) ∈ Ω2.
And we derive the 2D g-Navier-Stokes equations from 3D Navier-Stokes
equations.

2. Main Theorems

Now, we consider 3D Navier-Stokes equations,
∂U
∂t

− ν∆U + (U · ∇)U +∇Φ = F, in Ωg

∇ ·U = 0, in Ωg,

with the boundary condition

(1) U · n = 0 on ∂topΩg ∪ ∂bottomΩg

where

∂topΩg = {(y1, y2, y3) ∈ Ωg : y3 = g(y1, y2)},
∂bottomΩg = {(y1, y2, y3) ∈ Ωg : y3 = 0}.

The lateral boundary condition corresponding to ∂Ω2 does not affect to
the derivation of the 2D g-Navier-Stokes equations. But, in this paper
we consider the periodic and Dirichlet boundary conditions to study the
2D g-Navier-Stokes equations.

Now we define v(y1, y2) = (v1(y1, y2),v2(y1, y2),v3(y1, y2)) as

vi(y1, y2) = MUi(y1, y2, y3) =
1

g(y1, y2)

∫ g(y1,y2)

0
Ui(y1, y2, y3) dy3,

where U = (U1,U2,U3), for i = 1, 2, 3. Now, for w = (v1,v2), we get
the following theorem.

Theorem 2.1. Assume that ∇ ·U = 0 in Ωg and that (1) is valid.
Then one has

∇2 · (gw) =
∂(gv1)
∂x1

+
∂(gv2)
∂x2

= ∇g ·w + g (∇2 ·w) = 0 in Ω2,
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where ∇2 = ( ∂
∂x1

, ∂
∂x2

) and ∇g = ( ∂g
∂x1

, ∂g
∂x2

).

Proof. First we consider the change of variables

y1 = x1, y2 = x2, y3 = x3g(x1, x2)

maps Ω3 onto Ωg, where Ω3 = Ω2 × (0, 1). Then we obtain from the
chain rule that

∂x3

∂y1
= − y3

g2(y1, y2)
× ∂g

∂y1
= −x3

g
× ∂g

∂x1
and

∂x3

∂y2
= −x3

g
× ∂g

∂x2
.

Also, we have for u(x1, x2, x3) = U(y1, y2, y3),

∂U
∂y1

=
∂u
∂x1

+
∂u
∂x3

× ∂x3

∂y1
=

∂u
∂x1

− ∂u
∂x3

(
x3

g
× ∂g

∂x1
)

∂U
∂y2

=
∂u
∂x2

− ∂u
∂x3

(
x3

g
× ∂g

∂x2
),

∂U
∂y3

=
∂u
∂x3

(
∂x3

∂y3
) = (

1
g

∂u
∂x3

).

Therefore we have

(2) ∇ ·U = [
∂u1

∂x1
+

∂u2

∂x2
+

1
g

∂u3

∂x3
− x3

g
(
∂u1

∂x3

∂g

∂x1
+

∂u2

∂x3

∂g

∂x2
)].

Now we note

vi(x1, x2) =
1

g(y1, y2)

∫ g(y1,y2)

0
Ui(y1, y2, y3) dy3 =

∫ 1

0
ui(x1, x2, x3) dx3,

to obtain the followings:
∫ 1

0
g
∂u1

∂x1
dx3 = g

∂v1

∂x1
,

∫ 1

0
g
∂u2

∂x2
dx3 = g

∂v2

∂x2∫ 1

0

∂u3

∂x3
dx3 = u3(x1, x2, 1)− u3(x1, x2, 0)

−
∫ 1

0
x3

∂u1

∂x3

∂g

∂x1
dx3 = − ∂g

∂x1

∫ 1

0
x3

∂u1

∂x3
dx3

=
∂g

∂x1
[
∫ 1

0
u1 dx3]− ∂g

∂x1
x3u1|10

= v1
∂g

∂x1
− ∂g

∂x1
u1(x1, x2, 1)

−
∫ 1

0
x3

∂u2

∂x3

∂g

∂x2
dx3 = v2

∂g

∂x2
− ∂g

∂x2
u2(x1, x2, 1).
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Thus, we have

0 =
∫ g(y1,y2)

0
∇ ·U dy3 =

∫ 1

0
(∇ ·U) g dx3

= g(
∂v1

∂x1
+

∂v2

∂x2
) + v1

∂g

∂x1
+ v2

∂g

∂x2
+ BC,(3)

where BC is the boundary conditions on Ωg, i.e.,

BC = u3(x1, x2, 1)−u3(x1, x2, 0)− ∂g

∂x1
u1(x1, x2, 1)− ∂g

∂x2
u2(x1, x2, 1).

For the bottom part of Ωg, the normal vector n is n = (0, 0,−1). Thus

U · n = −U3|y3=x3=0 = −U3(y1, y2, 0) = −u3(x1, x2, 0) = 0.

For the top of Ωg, one has n = α(− ∂g
∂y1

,− ∂g
∂y2

, 1) where α is chosen so
that ‖ n ‖ = 1. So we have

α−1 U · n|top = (− ∂g

∂y1
U1 − ∂g

∂y2
U2 + U3)|top

= − ∂g

∂x1
u1(x1, x2, 1)− ∂g

∂x2
u2(x1, x2, 1) + u3(x1, x2, 1) = 0.

It then follows from assumption that BC = 0. This complete the proof
by (3).

Now, we assume that

U(y1, y2, y3) = (U1(y1, y2),U2(y1, y2),U3(y1, y2, y3))

= (u1(x1, x2),u2(x1, x2),u3(x1, x2, x3)) = u(x1, x2, x3).

Then, we raise the following questions:
1. What can we say about u3(x1, x2, x3) = U3(y1, y2, y3) if ∇·U = 0

in Ωg?
2. What can we say about u3(x1, x2, x3) = U3(y1, y2, y3) if U ·n = 0

on the top and bottom of Ωg?
For the answer, we have the following theorem.

Theorem 2.2. Let U(y1, y2, y3) = (U1(y1, y2),U2(y1, y2),U3(y1, y2, y3)).
Then we have ∇ ·U = 0 on Ωg and

U · n = 0 on the top and bottom of Ωg,

if and only if we obtain

u3(x1, x2, x3) = x3(
∂g

∂x1
u1 +

∂g

∂x2
u2) = −g x3 (

∂u1

∂x1
+

∂u2

∂x2
).
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Proof. First we know that if ∇ ·U = 0 then (2) implies

∂u1

∂x1
+

∂u2

∂x2
+

1
g

∂u3

∂x3
= 0.

Thus we have
∂u3

∂x3
= −g(

∂u1

∂x1
+

∂u2

∂x2
),

which implies that

u3 = −x3 g (
∂u1

∂x1
+

∂u2

∂x2
) + c(x1, x2),

for some function c(x1, x2). Since U · n = 0 on the bottom, one has
U3(y1, y2, 0) = u3(x1, x2, 0) = 0, which implies that

c(x1, x2) = 0, and u3(x1, x2, x3) = −x3 g (
∂u1

∂x1
+

∂u2

∂x2
).

By the definition of vi, note vi = ui, for i = 1, 2. So, by theorem 2.1 we
have ∇2 · gu = ∂(gu1)

∂x1
+ ∂(gu2)

∂x2
= 0 and

u3(x1, x2, x3) = x3(
∂g

∂x1
u1 +

∂g

∂x2
u2).

The converse comes from a direct calculation.

Now, let us go back to our problem, 3D Navier-Stokes equations on
Ωg,

∂U
∂t

− ν∆U + (U · ∇)U +∇Φ = F, in Ωg

∇ ·U = 0, in Ωg,

with the boundary condition

U · n = 0 on ∂topΩg ∪ ∂bottomΩg.

Since (U(y1, y2, y3)) = (U1(y1, y2),U2(y1, y2),U3(y1, y2, y3)) we have

vi(x1, x2) = Ui(y1, y2) = ui(x1, x2), i = 1, 2.

Therefore, by theorem 2.1 and theorem 2.2, w = (u1,u2) = (U1,U2)
satisfies the 2D g-Navier-Stokes equations,

∂w
∂t

− ν∆w + (w · ∇)w +∇p = f , in Ω2

∇ · gw = 0, in Ω2,

and third variable U3(y1, y2, y3) = u3(x1, x2, x3) can be solved by (U1,U2)
= (u1,u2).
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Therefore, we motivate to study 2D g-Navier-Stokes equations for 3D
Navier-Stokes equations on thin domain Ωg.

Remark 2.1. In theorem 2.1 and theorem 2.2, we do not use any
boundary condition other than (2). If U is periodic in (y1, y2), i.e.,
U(0, y2, y3) = U(1, y2, y3) and U(y1, 0, y3) = U(y1, 1, y3), then w is
also periodic in (y1, y2). Likewise, if U satisfies Dirichlet conditions
for (y1, y2) ∈ ∂Ω2, then w does as well.

Also, since u3(x1, x2, x3) = x3( ∂g
∂x1

u1+ ∂g
∂x2

u2), for smooth and bounded
function g(x1, x2), we have

‖ U3 ‖L2(Ωg) ≤ α ‖ w ‖L2(Ω2), ‖ ∇U3 ‖L2(Ωg) ≤ β ‖ w ‖H1(Ω2),

for some positive constants α, β.
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