• Title/Summary/Keyword: natural ventilation

Search Result 429, Processing Time 0.027 seconds

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

A Study of Solar heat removal Impact with Air-Vent Wall (통기벽체적용 건물에서의 일사열 제거효과 검토)

  • Kim, Sang-Jin;Kum, Jong-Soo;Choi, Kwang-Hwan;Shin, Byong-Hwan;Chung, Yong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • Ventilation through air vent system in a building envelope is expected to be an effective measure to release solar radiation. An external surface of a wall absorbs solar radiation and transfers it to the air in the cavity. The warmed air gets buoyant force. So when openings are provided at the top and bottom of the cavity, the warmed air is released through the top opening and cooler outside air replaces the space in the cavity. This reduces the further heat transmission into the built environment. This natural ventilation effect seems to be steady and strong. So because of the cavity and the openings, the cooling load reduction by natural ventilation is believed to be considerable.

Indoor Airflow of High-Rise Apartment with Different Types of Box-Windows (초고층 공동주택의 이중외피 창호 유형별 실내기류 특성 비교)

  • Choi, Tae-Hwoan;Jeon, Mi-Sook;Lee, Jung-Hyun;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.993-998
    • /
    • 2006
  • High-rise apartments have a problem using natural ventilation because of the strong outdoor wind velocity. Conventional high-rise apartments have adopted mechanical ventilation systems to maintain the indoor air quality. However, it leads to the overuse of electricity and the sick house syndrome. Double-skin facade is the alternative for the high-rise building to use natural ventilation and this study is focused on the performance of the box-window, which is a kind of double-skin facades. Indoor wind velocity and HCHO concentrations are analyzed with three types of box-windows: the diagonal type, parallel type and perpendicular type. The airflow is simulated by computational fluid dynamics program. Box-windows reduce the maximum value of indoor wind velocity about 50% compared with the single window and the HCHO concentrations do not have the big difference. Box-windows could be the alternative to enhance the use of the natural ventilation and indoor air quality of the high-rise apartment.

  • PDF

Sustainable Tall Buildings: Summary of Energy-Efficient Design

  • Kheir Al-Kodmany;Mir M. Ali;Paul J. Armstrong
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.107-120
    • /
    • 2023
  • Tall buildings are frequently decried as unsustainable due to their excessive energy usage. Early skyscrapers used natural light and ventilation to facilitate human comfort and applied organic materials such as stone, glass, wood, concrete, and terra cotta for cladding and finishes. With the advent of fluorescent lighting, modern heating, ventilation, air-conditioning (HVAC) systems, and thermally sealed curtain walls, tall office buildings no longer had to rely on natural light and ventilation to provide comfort. Energy efficiency was not a significant factor when the operational costs of buildings were relatively inexpensive. However, today's skyscrapers must become more energy-efficient and sustainable due to energy crises and climate change. This paper highlights vital energy-efficient design principles and demonstrates with illustrative case studies how they are applied to tall buildings in various parts of the world. It shows how sustainable environmental systems do not act alone but are integrated with advanced curtain wall systems, sky gardens, and atria, among others, to regulate and sustain thermal comfort and conserve energy.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

A Study on the Air Flow Characteristics in an Apartment Complex and Ventilation Performance of an Individual Unit for Improving IAQ (주동형태 변화에 따른 아파트 단지내 기류분석 및 단위주호의 환기성능에 관한 연구)

  • Lee, Jung-Hyun;Lee, Seung-Hee;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.5 no.3
    • /
    • pp.11-16
    • /
    • 2005
  • The recent trends of high-density and high-rise in apartment housing have caused the problems of decrease in ventilation rates and increase of indoor pollutant contaminants. SHS(Sick House Syndrome) has now become a major issue and threats the health of residents. To solve these indoor air problems, increase in ventilation rate is considered as one of the most efficient approach. Thus, the recent housing development is pursuing improvement in the site design and the layout of apartment building blocks to promote natural ventilation is now investigated as one of the fundamental solutions. This study was focused on the air flow characteristics of outdoor environment in an apartment complex to keep the pollutants out of the site. Age of air and pressure difference have been used as indices of the outdoor air quality. Four different types of apartment building layouts have been analyzed by CFD simulation. This study again selected a real apartment housing complex as a case study model. By analyzing the pressure differences between the front and rear of an apartment building block, the ventilation performance in each individual unit was evaluated, and its impact on ventilation performance is investigated by analyzing the stagnant air around the apartment building blocks. During this process, existing patterns of apartment housing layout have been evaluated, and the most appropriate site layout has been chosen to analyze the outdoor airflow patterns. Based on the analysis of airflow patterns of site layout, the possibilities of improving ventilation performance of an individual apartment housing is proposed.

A Basical Study about Ventilation Performance of Natural Smoke Ventilators through Stack Effect in High-rise Building (고층건축물에서의 연돌효과에 따른 배연창의 배연성능에 관한 기초적 연구)

  • Kim, Hye-Won;Jin, Seung-Hyun;Koo, In-Hyuk;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.54-55
    • /
    • 2017
  • The High-rise building has a problem the ventilation performance of natural ventilator by stack effect that it occurs by pressure difference. For that reason the study about natural smoke ventilator of High-rise building consistently needs. Therefore on this study does analysis of difference with abroad through investigate of Natrual smoke ventilator's law, it conducts of natural smoke ventilator's research on the actual condition. As a result on this study, in the case of abroad that it states more specific standards than domestic. Also the result of a field study, it shows that the natural smoke ventilator is installed same size and the number regardless of building's pressure difference.

  • PDF

The Diffusion Behavier Analysis Caused by High Pressure Natural Gas Leak in Enclosure with and without Ventilation System (I) (밀폐공간 및 강제환기공간에의 천연가스 고압분출 시 농도 확산분포 거동해석 (I))

  • Ha, Tae-Woong;Ha, Jong-Man;Kim, Eun-Ja
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.23-31
    • /
    • 2012
  • The basic understanding of gas diffusion and technology to predict the diffusion phenomena are needed to prepare against a disaster of leakage of natural gas and to design better consistent and reliable gas supply system in enclosure. The experimental results of British Gas Technology Co. are used in present study as a reference of theoretical study using CFD. The present results of 2D CFD analysis for mass flow rate of nozzle release show good agreement with experimental results within 2.6 % error. 3D CFD analysis for the characteristics of natural gas diffusion in enclosure with various ventilation patterns also gives reasonable agreement with experimental results.

The Study on Thermal Characteristic of the Balcony with Natural Ventilation System (자연환기시스템을 부착한 발코니의 열적 특성에 관한 연구)

  • Cho Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2005
  • This paper compared vertical temperature distribution between the existing balcony model without ventilator facilities and the improved balcony model with ventilator facilities using differential equation. As the air inside of balcony is heated by solar radiation this heated air is not exhausted in the existing balcony, remaining stagnant. The air temperature distribution was $26.7{\sim}29.3^{\circ}C$ in balcony without natural ventilator system. This heated air affected the rising air temperature of adjacent spaces such as living room and bedroom in the existing balcony. But, as the heated air inside of the improved balcony model is exhausted through natural ventilator facilities in summer, the air temperature in balcony has fallen. The air temperature distribution in improved balcony was $24.8{\sim}26.7^{\circ}C$ for the inlet air speed of 1 m/s and $24.6{\sim}26.7^{\circ}C$ for the inlet air speed of 3 m/s. The energy consumption of the improved balcony is 2.5 times less than of the existing balcony. The improved balcony with the closed damper makes a roll as the existing balcony in the aspect of the heating effect. When the heated air in the improved balcony is supplied, the air temperature is raised and the ventilation effect in adjacent spaces was improved.

An Experimental Study on Ventilation and Thermal Performance of Passive Ventilation Building Envelopes (패시브환기외피의 통기 및 열성능에 관한 실험적 연구)

  • Yoon, Seong-Hwan;Lee, Tae-Cheol;Kang, Jung-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.711-717
    • /
    • 2011
  • In this study, 5 types of PVS(Passive ventilation system) units are made and experimented its ventilation performance, thermal performance according to open rate and hole diameter of perforated aluminum plane. Results are as follows. 1) The ventilation performance increases approximately 50~70% according by the open rate of PVS increasing. Also, the ventilation performance increases about 2%~12% according by the hole diameter of PVS increasing. 2) In winter temperature/pressure condition(in : $20^{\circ}C$, out : $-2^{\circ}C/{\Delta}P$ : 0.2~5.0Pa) the temperature of inflow air decreases according by the open rate of PVS increasing. Heat gain performance decreases 10.1%, 25.6% when open rate increases 3) In the same condition, Heat gain performance decreases 18.3%, 18.8% according by the hole diameter of PVS increasing.