DOI QR코드

DOI QR Code

The Diffusion Behavier Analysis Caused by High Pressure Natural Gas Leak in Enclosure with and without Ventilation System (I)

밀폐공간 및 강제환기공간에의 천연가스 고압분출 시 농도 확산분포 거동해석 (I)

  • Ha, Tae-Woong (Dept. of Mechanical-Automotive Engineering, Gachon University) ;
  • Ha, Jong-Man (Korea Gas Cooperation R&D Division) ;
  • Kim, Eun-Ja (Dept. of Mechanical Engineering, Gachon Univ. Graduation School)
  • 하태웅 (가천대학교 기계.자동차공학과) ;
  • 하종만 (한국가스공사 연구개발원) ;
  • 김은자 (가천대학교 기계공학과 대학원)
  • Received : 2012.04.03
  • Accepted : 2012.08.06
  • Published : 2012.08.31

Abstract

The basic understanding of gas diffusion and technology to predict the diffusion phenomena are needed to prepare against a disaster of leakage of natural gas and to design better consistent and reliable gas supply system in enclosure. The experimental results of British Gas Technology Co. are used in present study as a reference of theoretical study using CFD. The present results of 2D CFD analysis for mass flow rate of nozzle release show good agreement with experimental results within 2.6 % error. 3D CFD analysis for the characteristics of natural gas diffusion in enclosure with various ventilation patterns also gives reasonable agreement with experimental results.

밀폐 공간 내의 천연가스 공급 시스템에서 가스 누설에 따른 재난을 방지하고 보다 안전한 설계를 하기 위해서는 누출된 천연가스의 확산거동을 이해하고 예측할 수 있는 기술이 필요하다. 본 연구에서는 CFD를 사용한 해석법을 제시하고, 기 수행된 British Gas Technology Co.의 실험결과와 비교하여 타당성을 제시하였다. 노즐에서의 분출유량 2D 해석 결과는 실험결과와 2.6% 이내로 잘 일치함을 보였다. 또한, 다양한 강제 환기 조건에 따른 가스 확산 특성을 비정상상태 3차원 CFD 해석을 수행한 결과 실험결과와 정성적인 경향이 잘 일치됨을 보였다.

Keywords

References

  1. Gogan, J. L., 1985, "Monte Carlo Simulation of Buoyant Dispersion," Atmospheric Environment, Vol. 19, pp. 867-878. https://doi.org/10.1016/0004-6981(85)90232-X
  2. Gopalakrishnan, S. G. and Sharan, M., 1997, "A Lagrangian Particle Model for Marginally Heavy Gas Dispersion," Atmospheric Environment, Vol. 30, pp. 3369-3382.
  3. Takeno, K., Okabayashi, K., Kouchi, A., Nonaka, T., Hashiguchi, K. and Chitose, K., 2007, "Dispersion and Explosion Field Tests for 40 MPa Pressurized Hydrogen," International Journal of Hydrogen Energy, Vol. 32, Issue 13, pp. 2144-2153. https://doi.org/10.1016/j.ijhydene.2007.04.018
  4. Liu, Y. L., Zeng, J. Y., Xu, P., Zhao, Y. Z., Bei, H. Y., Chen, H. G. and Dryver, H., 2009, "Numerical Simulation on the Diffusion of Hydrogen due to High Pressured Storage Tanks Failure," Journal of Loss Prevention in the Process Industries, Vol. 22, pp. 265-270. https://doi.org/10.1016/j.jlp.2008.06.007
  5. Mukai, S., Sujuki, J., Mitsuishi, H., Oyagawa,K. and Watanabe, S., 2005, "CFD Simulation of Diffusion of Hydrogen Leakage Caused by Fuel Cell Vehicle Accident in Tunnel, Underground Parking Lot and Multistory Parking Garage," The 19thint'l Technical Conference on The Enhanced Safety of Vehicles(ESV), Paper No. 05-0293.
  6. Ahn, H. J., Jung, J. H., Hur, N., Lee, M. K. and Yong, G., 2010, "The Numerical Simulation of Hydrogen Diffusion for The Hydrogen leakage in Tunnel," Journal of Computational Fluids Engineering, Vol. 15, No. 2, pp. 47-54.
  7. Darbr, S. and Pool, G, 1997, "An Experimental Study of Natural Gas Accumulation Following High and Low Pressures Releases Under Ventilated and Unventilated Condition," BG plc Gas Research & Technology Centre, GRTC R 1811.
  8. Ha, J. M., Lee, J. W. and Sung, W. M., 2002, "Investigation of Ventilation Efficiency for the Natural Gas High Pressure Release in an Underground Valve Station', Journal of the Korean Institute of Gas, Vol. 6, No. 1, pp. 74-80.
  9. FLUENT User Guide v6.3, GAMBIT User Guide v2.3.

Cited by

  1. 지하복합발전플랜트 내의 가스 누출 및 확산에 의한 위험성 평가 인자 분석 vol.20, pp.2, 2012, https://doi.org/10.15435/jilasskr.2015.20.2.101