DOI QR코드

DOI QR Code

Sustainable Tall Buildings: Summary of Energy-Efficient Design

  • Kheir Al-Kodmany (Department of Urban Planning and Policy, University of Illinois at Chicago) ;
  • Mir M. Ali (School of Architecture, University of Illinois at Urbana-Champaign) ;
  • Paul J. Armstrong (School of Architecture, University of Illinois at Urbana-Champaign)
  • Published : 2023.06.01

Abstract

Tall buildings are frequently decried as unsustainable due to their excessive energy usage. Early skyscrapers used natural light and ventilation to facilitate human comfort and applied organic materials such as stone, glass, wood, concrete, and terra cotta for cladding and finishes. With the advent of fluorescent lighting, modern heating, ventilation, air-conditioning (HVAC) systems, and thermally sealed curtain walls, tall office buildings no longer had to rely on natural light and ventilation to provide comfort. Energy efficiency was not a significant factor when the operational costs of buildings were relatively inexpensive. However, today's skyscrapers must become more energy-efficient and sustainable due to energy crises and climate change. This paper highlights vital energy-efficient design principles and demonstrates with illustrative case studies how they are applied to tall buildings in various parts of the world. It shows how sustainable environmental systems do not act alone but are integrated with advanced curtain wall systems, sky gardens, and atria, among others, to regulate and sustain thermal comfort and conserve energy.

Keywords

References

  1. Ali, M. M., & Armstrong, P. J. (2008, March). Overview of sustainable design factors in high-rise buildings. In Proc. of the CTBUH 8th World Congress (pp. 3-5). Chicago, IL, USA: CTBUH.
  2. Ali, M. M., & Moon, K. S. (2007). Structural developments in tall buildings: current trends and future prospects. Architectural science review, 50(3), 205-223. https://doi.org/10.3763/asre.2007.5027
  3. Al-Kodmany, K. (2018). Sustainability and the 21st-century vertical city: A review of design approaches of tall buildings. Buildings, 8(8), 102.
  4. Al-Kodmany, K. (2015). Tall buildings and elevators: A review of recent technological advances. Buildings, 5(3), 1070-1104. https://doi.org/10.3390/buildings5031070
  5. Ali, M. M. & Armstrong, P. J. (1995). Architecture of Tall Buildings. CTBUH Monograph 30, McGraw-Hill, New York, NY.
  6. Aminmansour, A., & Moon, K. S. (2010). Integrated design and construction of tall buildings. Journal of Architectural Engineering, 16(2), 47-53. https://doi.org/10.1061/(ASCE)1076-0431(2010)16:2(47)
  7. Aristodemou, E., Boganegra, L. M., Mottet, L., Pavlidis, D., Constantinou, A., Pain, C., ... & ApSimon, H. (2018). How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environmental pollution, 233, 782-796. https://doi.org/10.1016/j.envpol.2017.10.041
  8. Bachman, L.R., (2003). Integrated Building Systems: The Systems Basis of Architecture, John Wiley & Sons, New York, NY.
  9. Baker, W., Besjak, C., McElhatten, B., & Li, X. (2014). Pearl River Tower: Design Integration towards Sustainability. In Structures Congress 2014 (pp. 747-757).
  10. Beedle, L.S., Ali, M. M., & Armstrong, P. J. (2007). The Skyscraper and the City: Design, Technology, and Innovation, The Edwin Mellen Press, Lewiston, NY.
  11. Blaylock, M. L., & Klebanoff, L. E. (2022). Hydrogen gas dispersion studies for hydrogen fuel cell vessels I: Vent Mast releases. International Journal of Hydrogen Energy.
  12. Chew, M. Y., & Gan, V. J. (2022). Long-Standing Themes and Future Prospects for the Inspection and Maintenance of Facade Falling Objects from Tall Buildings. Sensors, 22(16), 6070.
  13. Elbakheit, A. R. (2018). A FRAMEWORK TOWARDS ENHANCED SUSTAINABLE SYSTEMS INTEGRATION INTO TALL BUILDINGS DESIGN. ArchNet-IJAR: International Journal of Architectural Research, 12(1), 251-265. https://doi.org/10.26687/archnet-ijar.v12i1.1272
  14. Elghamry, R., & Hassan, H. (2020). An experimental work on the impact of new combinations of solar chimney, photovoltaic and geothermal air tube on building cooling and ventilation. Solar Energy, 205, 142-153. https://doi.org/10.1016/j.solener.2020.05.049
  15. Ding, F., & Kareem, A. (2020). Tall buildings with dynamic facade under winds. Engineering, 6(12), 1443-1453. https://doi.org/10.1016/j.eng.2020.07.020
  16. Gui, C., Yan, D., Hong, T., Xiao, C., Guo, S., & Tao, Y. (2021). Vertical meteorological patterns and their impact on the energy demand of tall buildings. Energy and Buildings, 232, 110624.
  17. Hoseinzadeh, P., Assadi, M. K., Heidari, S., Khalatbari, M., Saidur, R., & Sangin, H. (2021). Energy performance of building integrated photovoltaic high-rise building: case study, Tehran, Iran. Energy and Buildings, 235, 110707.
  18. Kuwabara, B., Auer, T., Gouldsborough, T., Akerstream, T., & Klym, G. (2009). Manitoba Hydro Place: integrated design process exemplar.
  19. Lehmann, S. (Ed.). (2014). Low carbon cities: Transforming urban systems. Routledge.
  20. Mahian, O., Javidmehr, M., Kasaeian, A., Mohasseb, S., & Panahi, M. (2020). Optimal sizing and performance assessment of a hybrid combined heat and power system with energy storage for residential buildings. Energy Conversion and Management, 211, 112751.
  21. McCall, A. J., & Balling, R. J. (2017). Structural analysis and optimization of tall buildings connected with skybridges and atria. Structural and multidisciplinary optimization, 55(2), 583-600. https://doi.org/10.1007/s00158-016-1518-y
  22. Memon, S. A., Zain, M., Zhang, D., Rehman, S. K. U., Usman, M., & Lee, D. (2020). Emerging trends in the growth of structural systems for tall buildings. Journal of Structural Integrity and Maintenance, 5(3), 155-170. https://doi.org/10.1080/24705314.2020.1765270
  23. Mouzon, S., (2010). The Original Green: Unlocking the Mystery of True Sustainability, Guild Foundation Press, Los Angeles, CA.
  24. Parker, D., & Wood, A. (2013). Manitoba Hydro Place, Winnipeg, Canada. In The Tall Buildings Reference Book (pp. 398-405). Routledge.
  25. Oldfield, P., Trabucco, D., & Wood, A. (2009). Five energy generations of tall buildings: an historical analysis of energy consumption in high-rise buildings. The Journal of Architecture, 14(5), 591-613. https://doi.org/10.1080/13602360903119405
  26. SECLUK, S. A., & ILGIN, H. (2017). Performative Approaches in Tall Buildings: Pearl River Tower. Eurasian Journal of Civil Engineering and Architecture, 1(2), 11-20.
  27. Skvorc, P., & Kozmar, H. (2021). Wind energy harnessing on tall buildings in urban environments. Renewable and Sustainable Energy Reviews, 152, 111662.
  28. Trabucco, D. (2008). An analysis of the relationship between service cores and the embodied/running energy of tall buildings. The structural design of tall and special buildings, 17(5), 941-952. https://doi.org/10.1002/tal.477
  29. Wigginton, M., Harris, J (2002). Intelligent Skins, Routledge, DOI https://doi.org/10.4324/9780080495446
  30. Wimmers, G. (2017). Wood: a construction material for tall buildings. Nature Reviews Materials, 2(12), 1-2. https://doi.org/10.1038/natrevmats.2017.51
  31. Yeang, K., & Powell, R. (2007). Designing the ecoskyscraper: premises for tall building design. The Structural Design Of Tall and Special Buildings, 16(4), 411-427. https://doi.org/10.1002/tal.414
  32. Yudelson, J., & Meyer, U. (2013). The world's greenest buildings: Promise versus performance in sustainable design. Routledge.