• Title/Summary/Keyword: natural solution

Search Result 2,276, Processing Time 0.023 seconds

On the Dynamic Response of Laminated Circular Cylindrical Shells under Dynamic Loads (동하중을 받는 복합재료 원통셸의 동적거동 해석)

  • 이영신;이기두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2684-2693
    • /
    • 1993
  • The free vibration and dynamic response of cross-ply for CFRP and GFRP laminated circular cylindrical shells under dynamic loadings are investigated by using the first-order shear deformation shell theory. The modal analysis technique is used to develop the analytical solutions of simply supported cylindrical shells under dynamic load. The analysis is based on an expansion of the loads, displacements and rotations in a double Fourier series which satisfies the and boundary conditions of simply support. Analytical solution is assumed to be separable into a function of time and a function of position. In this paper, the considered load forces are step pulse, sine pulse, triangular(1, 2, 3) pulse and exponential pulse. The solution for a given loading pulse can be found by involving the convolution integral. The results show that the dynamic response are governed primarily by the natural period of the structure.

Electrocatalytic Reduction of Dioxygen at Glassy Carbon Electrodes with Irreversible Self-assembly of N-hexadecyl-N'-methyl Viologen

  • Lee, Chi-Woo;Jang, Jai-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.563-567
    • /
    • 1994
  • The electroreduction of dioxygen at glassy carbon electrodes with irreversible self-assembly of N-hexadecyl-N'-methyl viologen $(C_{16}VC_1)$ proceeds at potentials more positive than those where the reduction occurs at bare electrodes. The electrocatalyzed reduction takes place at potentials well ahead of those where the catalyst is reduced in the absence of dioxygen and the limiting currents observed at rotating disk electrodes did not deviate from the thoretical Levich line up to 6400 rpm, indicating that the electrocatalysis is extremely rapid. The rate constant for the heterogeneous reaction between $C_{16}V^+C_1$ immobilized on the electrode surface and $O_2$ in solution was estimated to be ca. $10^8\;M^{-1}s^{-1}$. The half-wave potential of dioxygen reduction was independent of solution pH.

COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS OF TYPE (A) AND (P) WITH APPLICATIONS IN DYNAMIC PROGRAMMING

  • Jiang, Guojing;Liu, Min;Lee, Suk-Jin;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.25 no.1
    • /
    • pp.11-26
    • /
    • 2009
  • In this paper, the concepts of compatible mappings of types (A) and (P) are introduced in an induced metric space, two common xed point theorems for two pairs of compatible mappings of types (A) and (P) in an induced complete metric space are established. As their applications, the existence and uniqueness results of common solution for a system of functional equations arising in dynamic programming are discussed.

Simulating the performance of the reinforced concrete beam using artificial intelligence

  • Yong Cao;Ruizhe Qiu;Wei Qi
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.269-286
    • /
    • 2023
  • In the present study, we aim to utilize the numerical solution frequency results of functionally graded beam under thermal and dynamic loadings to train and test an artificial neural network. In this regard, shear deformable functionally-graded beam structure is considered for obtaining the natural frequency in different conditions of boundary and material grading indices. In this regard, both analytical and numerical solutions based on Navier's approach and differential quadrature method are presented to obtain effects of different parameters on the natural frequency of the structure. Further, the numerical results are utilized to train an artificial neural network (ANN) using AdaGrad optimization algorithm. Finally, the results of the ANN and other solution procedure are presented and comprehensive parametric study is presented to observe effects of geometrical, material and boundary conditions of the free oscillation frequency of the functionally graded beam structure.

Free vibration analysis of FG carbon nanotube reinforced composite plates using dynamic stiffness method

  • Shahabeddin Hatami;Mohammad Reza Bahrami
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.135-148
    • /
    • 2024
  • This paper analytically investigates the free vibration analysis of functionally graded-carbon nanotube reinforced composite (FG-CNTRC) plates by dynamic stiffness method (DSM). The properties of CNTRC are determined with the extended rule of mixture. The governing differential equations of motion based on the first-order shear deformation theory of CNTRC plate are derived using Hamilton's principle. The FG-CNTRC plates are studied for a uniform and two different distributions of carbon nanotubes (CNTs). The accuracy and performance of the DSM are compared with the results obtained from closed closed-form and semi-analytical solution methods in previous studies. In this study, the effects of boundary condition, distribution type of CNTs, plate aspect ratio, plate length to thickness ratio, and different values of CNTs volume fraction on the natural frequencies of the FG-CNTRC plates are investigated. Finally, various natural frequencies of the plates in different conditions are provided as a benchmark for comparing the accuracy and precision of the other analytical and numerical methods.

Determination of quinine in aqueous solution by chemiluminescence method (화학발광법에 의한 수용액 중의 퀴닌 정량)

  • Lee, Hyun-Sook;Kim, Tae-Yeon;Choi, Kyoung-Hye;Karim, Mohammad Mainul;Bae, Hyun-Sook;Lee, Sang-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.317-322
    • /
    • 2006
  • A method to determine quinine in aqueous solution by chemiluminescence method using a stopped flow system has been studied. The method is based on the increased chemiluminescence intensity with the addition of quinine to a solution of lucigenin and hydrogen peroxide. The effects of KOH concentration, flow rate of reagents, $H_{2}O_{2}$ concentration used for the masking of quinine on the chemiluminescence intensity have been investigated. The calibration curve for quinine was linear over the range from $1.0{\times}10^{-7}$ M to $1.0{\times}10^{-3}$ M, coefficient of correlation was 0.993 and the detection limit was $3.0{\times}10^{-8}$ M under the optimal experimental conditions of 1.0 M, 1.5 M, 3.0 mL/min for the concentration of $H_{2}O_{2}$, KOH and flow rate of reagents, respectively.

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

Effect of Seed Priming on Quality Improvement of Maize Seeds in Different Genotypes

  • Seo Jung Moon;Lee Suk Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2004
  • In Korea, production of super sweet corn has been economically feasible and is substituting for traditional sweet corn due to better flavor in recent years. Major limiting factors for super sweet corn production are low field emergence and low seedling vigor. The optimum water potential (WP) for the priming of normal and aged seeds of dent, sweet (su) and super sweet (sh2) corns was studied to improve low seed quality. Seeds were primed at 0, -0.3, -0.6, -0.9, and -1.2 MPa of polyethylene glycol (PEG) 8000 solution at $15^{\circ}C$ for 2 days. Priming effects differed depending on the type of corn, seed quality, and WP of PEG solution. Although WP of priming solution did not influence the emergence rate of extremely high quality normal dent corn seeds, it reduced time to $50\%$ emergence (T50) and increased plumule weight. In contrast, the emergence rate of aged field corn was improved by seed priming at 0 MPa and plumule weight and $\alpha-amylase$ activity was enhanced. The optimum WP for both normal and aged sweet and super sweet corn seeds was between -0.3 and -0.6 Mpa. At the optimum WP emergence rate, $\alpha-amylase$ activity, and content of DNA and soluble protein increased, while T50 and leakage of total sugars and electrolytes reduced.

Removal of Natural Organic Matter (NOM) by Carbon Nanotubes Modified PVDF Membrane (탄소나노튜브(CNT)-PVDF 막을 이용한 자연용존유기물 제거)

  • Cho, Hyun-Hee;Cha, Min-Whan;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.148-156
    • /
    • 2012
  • In this research, the application of carbon nanotubes (CNTs) modified PVDF (polyvinylidene fluoride) membrane was tested as a simply and beginning attempt to overcome membrane fouling because CNTs importantly affect the transport of natural organic matter (NOM). Suwannee River fulvic acid (SRFA) as the representative of NOM was selected and its sorption results with single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and oxidized MWCNT (O-MWCNT) were obtained through the batch experiment. SRFA sorption isotherms had a strong nonlinearity and its sorption capacity followed the order O-MWCNT < MWCNT < SWCNT. The adsorbed mass of SRFA on each CNT decreased as a function of pH due to their charge repulsion. For the CNT-PVDF membrane filtration experiments, the suspended CNT solution (10 mg/40 mL) was incorporated into $0.45{\mu}m$-PVDF membrane and 5 mg/L of SRFA solution was monitored using UV detector connected with high pressure pump after passing through CNT-PVDF membrane. The SRFA removal efficiency by MWCNT-PVDF membrane was the strongest among other modified membranes. This suggests that the CNT modified microfiltration (MF) membrane might effectively and selectively apply to treat the contaminated water including organic compounds in the presence of NOM.

A Natural Language Question Answering System-an Application for e-learning

  • Gupta, Akash;Rajaraman, Prof. V.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.285-291
    • /
    • 2001
  • This paper describes a natural language question answering system that can be used by students in getting as solution to their queries. Unlike AI question answering system that focus on the generation of new answers, the present system retrieves existing ones from question-answer files. Unlike information retrieval approaches that rely on a purely lexical metric of similarity between query and document, it uses a semantic knowledge base (WordNet) to improve its ability to match question. Paper describes the design and the current implementation of the system as an intelligent tutoring system. Main drawback of the existing tutoring systems is that the computer poses a question to the students and guides them in reaching the solution to the problem. In the present approach, a student asks any question related to the topic and gets a suitable reply. Based on his query, he can either get a direct answer to his question or a set of questions (to a maximum of 3 or 4) which bear the greatest resemblance to the user input. We further analyze-application fields for such kind of a system and discuss the scope for future research in this area.

  • PDF