COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS OF TYPE (A) AND (P) WITH APPLICATIONS IN DYNAMIC PROGRAMMING

Guojing Jiang, Min Liu, Suk Jin Lee, and Shin Min Kang*

Abstract

In this paper, the concepts of compatible mappings of types (A) and (P) are introduced in an induced metric space, two common fixed point theorems for two pairs of compatible mappings of types (A) and (P) in an induced complete metric space are established. As their applications, the existence and uniqueness results of common solution for a system of functional equations arising in dynamic programming are discussed.

1. Introduction and preliminaries

Ray [18] established two fixed point theorems for the following contractive type mappings

$$
\begin{equation*}
d(f x, g y) \leq d(h x, h y)-\psi(d(h x, h y)), \quad \forall x, y \in X \tag{1.1}
\end{equation*}
$$

Liu [7] produced a few common fixed point results for two pairs of compatible mappings A, S and B, T in a complete metric space (X, d) such that for all $x, y \in X$,

$$
\begin{align*}
& d(A x, B y) \\
& \leq \max \left\{d(S x, T y), d(S x, A x), d(T y, B y), \frac{1}{2}[d(S x, B y)+d(T y, A x)]\right\} \\
& -\varphi(\max \{d(S x, T y), d(S x, A x), d(T y, B y), \tag{1.2}\\
& \left.\left.\quad \frac{1}{2}[d(S x, B y)+d(T y, A x)]\right\}\right)
\end{align*}
$$

In particular, Huang, Lee and Kang [4] got a few common fixed point theorems for two pairs of compatible mappings A, S and B, T in a complete metric space

[^0](X, d) which satisfy the following condition for all $x, y \in X$,
\[

$$
\begin{align*}
& d(A x, B y) \\
& \leq \phi(\max \{d(S x, T y), d(S x, A x), d(T y, B y), \tag{1.3}\\
& \left.\left.\frac{1}{2}[d(S x, B y)+d(T y, A x)]\right\}\right)
\end{align*}
$$
\]

where $\phi:[0,+\infty) \rightarrow[0,+\infty)$ is nondecreasing, upper semi-continuous and $\phi(t)<t$ for all $t>0$. Moreover, Pathak, Cho, Kang and Lee [17] obtained several common fixed point theorems for two pairs of compatible mappings of type (P) satisfying (1.3).

As proposed in Bellman and Lee [1], the essential form of the functional equation in dynamic programming is

$$
\begin{equation*}
f(x)=\underset{y \in D}{\operatorname{opt}} H(x, y, f(T(x, y))), \quad \forall x \in S \tag{1.4}
\end{equation*}
$$

where x and y denote the state and decision vectors, respectively. T denotes the transformation of the process, $f(x)$ denotes the optimal return function with the initial state x, and the opt represents sup or inf.

Bhakta and Mitra [3], Huang, Lee and Kang [4], Liu [5-7], Liu, Agarwal and Kang [9], Liu and Kang [10-11], Liu and Kim [12], Liu and Ume [13], Liu, Ume and Kang [14], Liu, Xu, Ume and Kang [15], Pathak and Fisher [16], Pathak, Cho, Kang and Lee [17] and others established the existence and uniqueness of solutions or common solutions for several classes of functional equations or systems of functional equations arising in dynamic programming by means of various fixed and common fixed point theorems. Bhakta and Choudhury [2] obtained two fixed point theorems by using countable family of pseudometrics and discussed also the existence of solutions for the following functional equation:

$$
\begin{equation*}
f(x)=\inf _{y \in D} G(x, y, f), \quad \forall x \in S \tag{1.5}
\end{equation*}
$$

Aroused and motivated by the above achievements in [1-18], we introduce the following contractive type mappings and system of functional equations arising in dynamic programming, respectively,

$$
\begin{align*}
& d_{k}^{s+t}(f x, g y) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}(l x, h y), d_{k}(f x, l x), d_{k}(g y, h y), d_{k}(f x, g y)\right\}\right\}\right. \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}(l x, h y), d_{k}(f x, l x), d_{k}(g y, h y)\right.\right. \tag{1.6}\\
& \left.\left.\left.d_{k}(f x, g y)\right\}, q \in\left\{d_{k}(f x, h y), d_{k}(g y, l x)\right\}\right\}\right\}
\end{align*}
$$

$$
\begin{aligned}
-w(\max \{ & \left\{p^{s} q^{t}: p, q \in\left\{d_{k}(l x, h y), d_{k}(f x, l x), d_{k}(g y, h y),\right.\right. \\
& \left.\left.d_{k}(f x, g y)\right\}\right\} \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}(l x, h y),\right.\right. \\
& \left.d_{k}(f x, l x), d_{k}(g y, h y), d_{k}(f x, g y)\right\}, \\
& \left.\left.\left.q \in\left\{d_{k}(f x, h y), d_{k}(g y, l x)\right\}\right\}\right\}\right),
\end{aligned}
$$

where s and t are some nonnegative numbers with $s+t>0$ and $w \in W$, where

$$
\begin{gathered}
W=\{w \mid w:[0,+\infty) \rightarrow[0,+\infty) \text { is a continuous function satisfying } \\
0<w(t)<t, \forall t>0\}
\end{gathered}
$$

and

$$
\begin{array}{ll}
f_{1}(x)=\underset{y \in D}{\operatorname{opt}}\left\{u(x, y)+H_{1}\left(x, y, f_{1}(T(x, y))\right)\right\}, & \forall x \in S, \\
f_{2}(x)=\operatorname{opt}_{y \in D}\left\{u(x, y)+H_{2}\left(x, y, f_{2}(T(x, y))\right)\right\}, & \forall x \in S, \\
g_{1}(x)=\underset{y \in D}{\operatorname{opt}}\left\{u(x, y)+G_{1}\left(x, y, g_{1}(T(x, y))\right)\right\}, & \forall x \in S, \tag{1.7}\\
g_{2}(x)=\underset{y \in D}{\operatorname{opt}}\left\{u(x, y)+G_{2}\left(x, y, g_{2}(T(x, y))\right)\right\}, & \forall x \in S .
\end{array}
$$

The purpose of this paper is to study the existence and uniqueness of common fixed points for the contractive type mappings (1.6) in an induced complete metric space, which is generated by a countable family of pseudometrics $\left\{d_{k}\right\}_{k \geq 1}$. Under certain conditions, we prove two common fixed point theorems for the contractive type mappings (1.6). As applications, we use the common fixed point theorems presented in this paper to establish the existence and uniqueness results of common solution for the system of functional equations (1.7).

Throughout this paper, let $\mathbb{R}^{+}=[0,+\infty)$ and $\left\{d_{k}\right\}_{k \geq 1}$ be a countable family of pseudometrics on a nonempty set X such that for any distinct $x, y \in$ $X, d_{k}(x, y) \neq 0$ for some $k \geq 1$. Define

$$
d(x, y)=\sum_{k=1}^{\infty} 2^{-k} \frac{d_{k}(x, y)}{1+d_{k}(x, y)}, \quad \forall x, y \in X
$$

It is clear that d is a metric on X and the metric d and the metric space (X, d) are called, respectively, an induced metric and induced metric space by the countable family of pseudometircs $\left\{d_{k}\right\}_{k \geq 1}$, respectively. A sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ converges to a point $x \in X$ if and only if $d_{k}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ for each $k \geq 1$, and $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ is a Cauchy sequence if and only if $d_{k}\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$ for each $k \geq 1$. The induced metric space (X, d) is called complete if each Cauchy sequence in X converges to some point in X. A self mapping f on (X, d) is said to be continuous in X if $\lim _{n \rightarrow \infty} f x_{n}=f x$ whenever $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left\{x_{n}\right\}_{n \geq 1}$ converges to $x \in X$.

2. Common fixed point theorems

In this section, let (X, d) be the induced metric space by the countable family of pseudometrics $\left\{d_{k}\right\}_{k \geq 1}$ such that for any distinct $x, y \in X, d_{k}(x, y) \neq 0$ for some $k \geq 1$.

Now we introduce the concepts of compatible mappings of types (A) and (P) in the induced metric space (X, d) and give two useful lemmas.

Definition 2.1. The mappings $g, h:(X, d) \rightarrow(X, d)$ are said to be compatible of type (A) if

$$
\lim _{n \rightarrow \infty} d_{k}\left(g h x_{n}, h h x_{n}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} d_{k}\left(h g x_{n}, g g x_{n}\right)=0, \quad \forall k \geq 1
$$

whenever $\left\{x_{n}\right\}_{n \geq 1}$ is a sequence in X such that $\lim _{n \rightarrow \infty} g x_{n}=\lim _{n \rightarrow \infty} h x_{n}=z$ for some $z \in X$.

Definition 2.2. The mappings $g, h:(X, d) \rightarrow(X, d)$ are said to be compatible of type (P) if

$$
\lim _{n \rightarrow \infty} d_{k}\left(g g x_{n}, h h x_{n}\right)=0, \quad \forall k \geq 1
$$

whenever $\left\{x_{n}\right\}_{n \geq 1}$ is a sequence in X such that $\lim _{n \rightarrow \infty} g x_{n}=\lim _{n \rightarrow \infty} h x_{n}=z$ for some $z \in X$.

It is easy to verify that the following results hold.
Lemma 2.1. Let f and l be compatible mappings of type (A) from the induced metric space (X, d) into itself. If $f t=l t$ for some $t \in X$, then $f l t=l l t=$ $l f t=f f t$.
Lemma 2.2. Let f and l be compatible mappings of type (P) from the induced metric space (X, d) into itself. If $f t=l t$ for some $t \in X$, then $f l t=f f t=$ $l l t=l f t$.

Next we show two common fixed point theorems for the contractive type mappings (1.6) in the induced complete metric spaces (X, d).

Theorem 2.1. Let the induced metric space (X, d) be complete and f, g, h and l be four self mappings of (X, d) such that
(B1) one of f, g, h and l is continuous;
(B2) the pairs f, l and g, h are compatible of type (A);
(B3) $f(X) \subseteq h(X), g(X) \subseteq l(X)$;
(B4) there exist some $w \in W, s, t \in \mathbb{R}^{+}$with $s+t>0$ satisfying (1.6).
Then f, g, h and l have a unique common fixed point in X.
Proof. Let x_{0} be an arbitrary point in X. In terms of ($B 3$), there exist two sequences $\left\{x_{n}\right\}_{n \geq 0} \subseteq X$ and $\left\{y_{n}\right\}_{n \geq 1} \subseteq X$ such that $f x_{2 n}=h x_{2 n+1}=y_{2 n+1}$ and $g x_{2 n+1}=l x_{2 n+2}=y_{2 n+2}$ for $n \geq 0$. Define $d_{k n}=d_{k}\left(y_{n}, y_{n+1}\right)$ for $n \geq 1$ and $k \geq 1$. We firstly prove that

$$
\begin{equation*}
d_{k n+1}^{s+t} \leq d_{k n}^{s+t}-w\left(d_{k n}^{s+t}\right), \quad \forall n \geq 1, k \geq 1 \tag{2.1}
\end{equation*}
$$

In view of (1.6) we acquire that

$$
\begin{aligned}
& d_{k 2 n+1}^{s+t}=d_{k}^{s+t}\left(f x_{2 n}, g x_{2 n+1}\right) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l x_{2 n}, h x_{2 n+1}\right), d_{k}\left(f x_{2 n}, l x_{2 n}\right),\right.\right.\right. \\
& \left.\left.d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f x_{2 n}, g x_{2 n+1}\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l x_{2 n}, h x_{2 n+1}\right),\right.\right. \\
& \left.d_{k}\left(f x_{2 n}, l x_{2 n}\right), d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f x_{2 n}, g x_{2 n+1}\right)\right\}, \\
& \left.\left.q \in\left\{d_{k}\left(f x_{2 n}, h x_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, l x_{2 n}\right)\right\}\right\}\right\} \\
& -w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l x_{2 n}, h x_{2 n+1}\right), d_{k}\left(f x_{2 n}, l x_{2 n}\right),\right.\right.\right.\right. \\
& \left.\left.d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f x_{2 n}, g x_{2 n+1}\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l x_{2 n}, h x_{2 n+1}\right),\right.\right. \\
& \left.d_{k}\left(f x_{2 n}, l x_{2 n}\right), d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f x_{2 n}, g x_{2 n+1}\right)\right\}, \\
& \left.\left.\left.q \in\left\{d_{k}\left(f x_{2 n}, h x_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, l x_{2 n}\right)\right\}\right\}\right\}\right) \\
& =\max \left\{\{ p ^ { s } q ^ { t } : p , q \in \{ d _ { k 2 n } , d _ { k 2 n + 1 } \} \} \bigcup \left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}:\right.\right. \\
& \left.\left.p \in\left\{d_{k 2 n}, d_{k 2 n+1}\right\}, q \in\left\{0, d_{k}\left(y_{2 n}, y_{2 n+2}\right)\right\}\right\}\right\} \\
& -w\left(\operatorname { m a x } \left\{\{ p ^ { s } q ^ { t } : p , q \in \{ d _ { k 2 n } , d _ { k 2 n + 1 } \} \} \bigcup \left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}:\right.\right.\right. \\
& \left.\left.\left.p \in\left\{d_{k 2 n}, d_{k 2 n+1}\right\}, q \in\left\{0, d_{k}\left(y_{2 n}, y_{2 n+2}\right)\right\}\right\}\right\}\right),
\end{aligned}
$$

which infers that

$$
\begin{align*}
& d_{k 2 n+1}^{s+t} \\
& \leq \max \left\{d_{k 2 n}^{s+t}, d_{k 2 n+1}^{s+t}, d_{k 2 n}^{s} d_{k 2 n+1}^{t}, d_{k 2 n}^{t} d_{k 2 n+1}^{s},\right. \\
& d_{k 2 n}^{s}\left(\frac{d_{k}\left(y_{2 n}, y_{2 n+2}\right)}{2}\right)^{t}, d_{k 2 n}^{t}\left(\frac{d_{k}\left(y_{2 n}, y_{2 n+2}\right)}{2}\right)^{s}, \\
& \left.d_{k 2 n+1}^{s}\left(\frac{d_{k}\left(y_{2 n}, y_{2 n+2}\right)}{2}\right)^{t}, d_{k 2 n+1}^{t}\left(\frac{d_{k}\left(y_{2 n}, y_{2 n+2}\right)}{2}\right)^{s}\right\} \tag{2.2}\\
& -w\left(\operatorname { m a x } \left\{d_{k 2 n}^{s+t}, d_{k 2 n+1}^{s+t}, d_{k 2 n}^{s} d_{k 2 n+1}^{t}, d_{k 2 n}^{t} d_{k 2 n+1}^{s},\right.\right. \\
& d_{k 2 n}^{s}\left(\frac{d_{k}\left(y_{2 n}, y_{2 n+2}\right)}{2}\right)^{t}, d_{k 2 n}^{t}\left(\frac{d_{k}\left(y_{2 n}, y_{2 n+2}\right)}{2}\right)^{s}, \\
& \left.\left.d_{k 2 n+1}^{s}\left(\frac{d_{k}\left(y_{2 n}, y_{2 n+2}\right)}{2}\right)^{t}, d_{k 2 n+1}^{t}\left(\frac{d_{k}\left(y_{2 n}, y_{2 n+2}\right)}{2}\right)^{s}\right\}\right)
\end{align*}
$$

$$
\begin{aligned}
= & \max \left\{d_{k 2 n}^{s+t}, d_{k 2 n+1}^{s+t}, d_{k 2 n}^{s} d_{k 2 n+1}^{t}, d_{k 2 n}^{t} d_{k 2 n+1}^{s}\right\} \\
& -w\left(\max \left\{d_{k 2 n}^{s+t}, d_{k 2 n+1}^{s+t}, d_{k 2 n}^{s} d_{k 2 n+1}^{t}, d_{k 2 n}^{t} d_{k 2 n+1}^{s}\right\}\right), \quad \forall k \geq 1
\end{aligned}
$$

Suppose that $d_{k 2 n+1}>d_{k 2 n}$ for some $n \geq 1$ and $k \geq 1$. It follows from (2.2) that $d_{k 2 n+1}^{s+t} \leq d_{k 2 n+1}^{s+t}-w\left(d_{k 2 n+1}^{s+t}\right)<d_{k 2 n+1}^{s+t}$, which is a contradiction. Hence $d_{k 2 n+1} \leq d_{k 2 n}$ for any $n \geq 1$ and $k \geq 1$. Thus (2.2) means that $d_{k 2 n+1}^{s+t} \leq d_{k 2 n}^{s+t}-w\left(d_{k 2 n}^{s+t}\right)$ for any $n \geq 1$ and $k \geq 1$. Similarly we conclude that $d_{k 2 n}^{s+t} \leq d_{k 2 n-1}^{s+t}-w\left(d_{k 2 n-1}^{s+t}\right)$ for each $n \geq 1$ and $k \geq 1$. It follows that (2.1) holds.

At present, we demonstrate that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{k n}=0, \quad \forall k \geq 1 \tag{2.3}
\end{equation*}
$$

In view of (2.1) we deduce that

$$
\sum_{i=1}^{n} w\left(d_{k i}^{s+t}\right) \leq d_{k 1}^{s+t}-d_{k n+1}^{s+t} \leq d_{k 1}^{s+t}, \quad \forall n \geq 1, k \geq 1
$$

which yields that the series of nonnegative terms $\sum_{n=1}^{\infty} w\left(d_{k n}^{s+t}\right)$ for all $k \geq 1$ is convergent. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} w\left(d_{k n}^{s+t}\right)=0, \quad \forall k \geq 1 \tag{2.4}
\end{equation*}
$$

Due to (2.1) we get that

$$
0 \leq d_{k n}^{s+t} \leq d_{k n-1}^{s+t} \leq \cdots \leq d_{k 1}^{s+t}, \quad \forall n \geq 1, k \geq 1,
$$

which implies that $\lim _{n \rightarrow \infty} d_{k n}^{s+t}=a$ for some $a \in \mathbb{R}^{+}$and for each $k \geq 1$. By (2.4) and the continuity of w we have

$$
w(a)=\lim _{n \rightarrow \infty} w\left(d_{k n}^{s+t}\right)=0, \quad \forall k \geq 1
$$

thereupon $a=0$. It follows that (2.3) holds.
In order to show that $\left\{y_{n}\right\}_{n \geq 1}$ is a Cauchy sequence, in view of (2.3), it is sufficient to show that $\left\{y_{2 n}\right\}_{n \geq 1}$ is a Cauchy sequence. Suppose that $\left\{y_{2 n}\right\}_{n \geq 1}$ is not a Cauchy sequence. Hence there exists a positive number ε and $k \geq 1$ on condition that for each even integer $2 r$, there are even integers $2 m(r)$ and $2 n(r)$ such that $2 m(r)>2 n(r)>2 r$, and

$$
d_{k}\left(y_{2 m(r)}, y_{2 n(r)}\right)>\varepsilon
$$

For each even integer $2 r$, let $2 m(r)$ be the least even integer exceeding $2 n(r)$ satisfying the above inequality, therefore we obtain that

$$
\begin{equation*}
d_{k}\left(y_{2 m(r)-2}, y_{2 n(r)}\right) \leq \varepsilon \quad \text { and } \quad d_{k}\left(y_{2 m(r)}, y_{2 n(r)}\right)>\varepsilon \tag{2.5}
\end{equation*}
$$

It follows that for each even integer $2 r$,

$$
d_{k}\left(y_{2 m(r)}, y_{2 n(r)}\right) \leq d_{k 2 m(r)-1}+d_{k 2 m(r)-2}+d_{k}\left(y_{2 m(r)-2}, y_{2 n(r)}\right)
$$

Using (2.3), (2.5) and the above inequality we obtain that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} d_{k}\left(y_{2 m(r)}, y_{2 n(r)}\right)=\varepsilon \tag{2.6}
\end{equation*}
$$

It is apparent that for any $r \geq 1$,

$$
\begin{aligned}
\left|d_{k}\left(y_{2 m(r)}, y_{2 n(r)+1}\right)-d_{k}\left(y_{2 m(r)}, y_{2 n(r)}\right)\right| & \leq d_{k 2 n(r)} \\
\left|d_{k}\left(y_{2 m(r)+1}, y_{2 n(r)+1}\right)-d_{k}\left(y_{2 m(r)}, y_{2 n(r)+1}\right)\right| & \leq d_{k 2 m(r)}
\end{aligned}
$$

and

$$
\left|d_{k}\left(y_{2 m(r)+1}, y_{2 n(r)+2}\right)-d_{k}\left(y_{2 m(r)+1}, y_{2 n(r)+1}\right)\right| \leq d_{k 2 n(r)+1}
$$

In light of (2.3), (2.6) and the above inequalities we draw that

$$
\begin{aligned}
\varepsilon & =\lim _{r \rightarrow \infty} d_{k}\left(y_{2 m(r)}, y_{2 n(r)+1}\right)=\lim _{r \rightarrow \infty} d_{k}\left(y_{2 m(r)+1}, y_{2 n(r)+1}\right) \\
& =\lim _{r \rightarrow \infty} d_{k}\left(y_{2 m(r)+1}, y_{2 n(r)+2}\right) .
\end{aligned}
$$

By means of (1.6) we arrive at

$$
\begin{aligned}
& d_{k}^{s+t}\left(f x_{2 m(r)}, g x_{2 n(r)+1}\right) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l x_{2 m(r)}, h x_{2 n(r)+1}\right), d_{k}\left(f x_{2 m(r)}, l x_{2 m(r)}\right)\right.\right.\right. \\
& \left.\left.d_{k}\left(g x_{2 n(r)+1}, h x_{2 n(r)+1}\right), d_{k}\left(f x_{2 m(r)}, g x_{2 n(r)+1}\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l x_{2 m(r)}, h x_{2 n(r)+1}\right)\right.\right. \\
& d_{k}\left(f x_{2 m(r)}, l x_{2 m(r)}\right), d_{k}\left(g x_{2 n(r)+1}, h x_{2 n(r)+1}\right) \\
& \left.d_{k}\left(f x_{2 m(r)}, g x_{2 n(r)+1}\right)\right\}, q \in\left\{d_{k}\left(f x_{2 m(r)}, h x_{2 n(r)+1}\right)\right. \\
& \left.\left.\left.d_{k}\left(g x_{2 n(r)+1}, l x_{2 m(r)}\right)\right\}\right\}\right\} \\
& -w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l x_{2 m(r)}, h x_{2 n(r)+1}\right), d_{k}\left(f x_{2 m(r)}, l x_{2 m(r)}\right)\right.\right.\right.\right. \\
& \left.\left.d_{k}\left(g x_{2 n(r)+1}, h x_{2 n(r)+1}\right), d_{k}\left(f x_{2 m(r)}, g x_{2 n(r)+1}\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l x_{2 m(r)}, h x_{2 n(r)+1}\right),\right.\right. \\
& \\
& d_{k}\left(f x_{2 m(r)}, l x_{2 m(r)}\right), d_{k}\left(g x_{2 n(r)+1}, h x_{2 n(r)+1}\right) \\
& \left.d_{k}\left(f x_{2 m(r)}, g x_{2 n(r)+1}\right)\right\}, q \in\left\{d_{k}\left(f x_{2 m(r)}, h x_{2 n(r)+1}\right)\right. \\
& \\
& \left.\left.\left.\left.d_{k}\left(g x_{2 n(r)+1}, l x_{2 m(r)}\right)\right\}\right\}\right\}\right)
\end{aligned}
$$

Letting $r \rightarrow \infty$, we get that

$$
\begin{aligned}
\varepsilon^{s+t} & \leq \max \left\{\varepsilon^{s+t}, 0, \varepsilon^{s}\left(\frac{\varepsilon}{2}\right)^{t}, \varepsilon^{t}\left(\frac{\varepsilon}{2}\right)^{s}\right\}-w\left(\max \left\{\varepsilon^{s+t}, 0, \varepsilon^{s}\left(\frac{\varepsilon}{2}\right)^{t}, \varepsilon^{t}\left(\frac{\varepsilon}{2}\right)^{s}\right\}\right) \\
& =\varepsilon^{s+t}-w\left(\varepsilon^{s+t}\right)<\varepsilon^{s+t}
\end{aligned}
$$

which is a contradiction. Thus $\left\{y_{n}\right\}_{n \geq 1}$ is a Cauchy sequence and it converges to a point $u \in X$ by completeness of X. Suppose that l is continuous. Consequently, we infer that

$$
\lim _{n \rightarrow \infty} l l x_{2 n}=\lim _{n \rightarrow \infty} l y_{2 n}=l u
$$

(B2) means that

$$
\lim _{n \rightarrow \infty} f y_{2 n}=\lim _{n \rightarrow \infty} f l x_{2 n}=l u
$$

We subsequently produce that u is a common fixed point of f, g, h and l. It follows from (1.6) that

$$
\begin{aligned}
& d_{k}^{s+t}\left(f y_{2 n}, g x_{2 n+1}\right) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l y_{2 n}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n}, l y_{2 n}\right),\right.\right.\right. \\
& \left.\left.d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n}, g x_{2 n+1}\right)\right\}\right\} \\
& \cup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l y_{2 n}, h x_{2 n+1}\right),\right.\right. \\
& \left.d_{k}\left(f y_{2 n}, l y_{2 n}\right), d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n}, g x_{2 n+1}\right)\right\}, \\
& \left.\left.q \in\left\{d_{k}\left(f y_{2 n}, h x_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, l y_{2 n}\right)\right\}\right\}\right\} \\
& -w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l y_{2 n}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n}, l y_{2 n}\right),\right.\right.\right.\right. \\
& \left.\left.d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n}, g x_{2 n+1}\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l y_{2 n}, h x_{2 n+1}\right),\right.\right. \\
& \\
& \left.d_{k}\left(f y_{2 n}, l y_{2 n}\right), d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n}, g x_{2 n+1}\right)\right\}, \\
& \left.\left.\left.q \in\left\{d_{k}\left(f y_{2 n}, h x_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, l y_{2 n}\right)\right\}\right\}\right\}\right), \quad \forall k \geq 1 .
\end{aligned}
$$

As $n \rightarrow \infty$ in above inequality, we know that

$$
d_{k}^{s+t}(l u, u) \leq d_{k}^{s+t}(l u, u)-w\left(d_{k}^{s+t}(l u, u)\right) \leq d_{k}^{s+t}(l u, u), \quad \forall k \geq 1,
$$

which signifies that $d_{k}(l u, u)=0$ for any $k \geq 1$, that is, $l u=u$. Using (1.6) we see that

$$
\begin{aligned}
& d_{k}^{s+t}\left(f u, g x_{2 n+1}\right) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l u, h x_{2 n+1}\right), d_{k}(f u, l u),\right.\right.\right. \\
& \left.\left.d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f u, g x_{2 n+1}\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l u, h x_{2 n+1}\right),\right.\right. \\
& \left.d_{k}(f u, l u), d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f u, g x_{2 n+1}\right)\right\}, \\
& \left.\left.q \in\left\{d_{k}\left(f u, h x_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, l u\right)\right\}\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
&-w(\max \{ \left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l u, h x_{2 n+1}\right), d_{k}(f u, l u)\right.\right. \\
&\left.\left.d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f u, g x_{2 n+1}\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l u, h x_{2 n+1}\right)\right.\right. \\
&\left.d_{k}(f u, l u), d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f u, g x_{2 n+1}\right)\right\} \\
&\left.\left.\left.q \in\left\{d_{k}\left(f u, h x_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, l u\right)\right\}\right\}\right\}\right), \quad \forall k \geq 1
\end{aligned}
$$

As $n \rightarrow \infty$ in the above inequality, we gain that

$$
d_{k}^{s+t}(f u, u) \leq d_{k}^{s+t}(f u, u)-w\left(d_{k}^{s+t}(f u, u)\right) \leq d_{k}^{s+t}(f u, u), \quad \forall k \geq 1
$$

which implies that $d_{k}(f u, u)=0$ for any $k \geq 1$. Therefore $f u=u$. In view of (B3), there exists a point $z \in X$ such that $u=f u=h z$. It follows from (1.6) that

$$
\begin{aligned}
& d_{k}^{s+t}(u, g z) \\
& =d_{k}^{s+t}(f u, g z) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}(l u, h z), d_{k}(f u, l u), d_{k}(g z, h z), d_{k}(f u, g z)\right\}\right\}\right. \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}(l u, h z), d_{k}(f u, l u), d_{k}(g z, h z)\right.\right. \\
& \\
& \left.\left.\left.\qquad d_{k}(f u, g z)\right\}, q \in\left\{d_{k}(f u, h z), d_{k}(g z, l u)\right\}\right\}\right\} \\
& -w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}(l u, h z), d_{k}(f u, l u), d_{k}(g z, h z), d_{k}(f u, g z)\right\}\right\}\right.\right. \\
& \\
& \qquad\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}(l u, h z), d_{k}(f u, l u), d_{k}(g z, h z)\right.\right. \\
& \left.\left.\left.\left.\quad d_{k}(f u, g z)\right\}, q \in\left\{d_{k}(f u, h z), d_{k}(g z, l u)\right\}\right\}\right\}\right) \\
& =d_{k}^{s+t}(u, g z)-w\left(d_{k}^{s+t}(u, g z)\right) \leq d_{k}^{s+t}(u, g z), \quad \forall k \geq 1,
\end{aligned}
$$

which implies that $d_{k}(u, g z)=0$ for each $k \geq 1$. Thereupon $u=g z$. By means of $(B 2), g z=h z=u$ and Lemma 2.1, we come into $d_{k}(g u, h u)=0$ for any $k \geq 1$, which gives that $g u=h u$. In a similar manner, by (1.6) we get that

$$
\begin{aligned}
& d_{k}^{s+t}(f u, g u) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}(l u, h u), d_{k}(f u, l u), d_{k}(g u, h u), d_{k}(f u, g u)\right\}\right\}\right. \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}(l u, h u), d_{k}(f u, l u), d_{k}(g u, h u)\right.\right. \\
& \left.\left.\left.d_{k}(f u, g u)\right\}, q \in\left\{d_{k}(f u, h u), d_{k}(g u, l u)\right\}\right\}\right\}
\end{aligned}
$$

$$
\begin{gathered}
-w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}(l u, h u), d_{k}(f u, l u), d_{k}(g u, h u), d_{k}(f u, g u)\right\}\right\}\right.\right. \\
\bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}(l u, h u), d_{k}(f u, l u), d_{k}(g u, h u),\right.\right. \\
\left.\left.\left.\left.d_{k}(f u, g u)\right\}, q \in\left\{d_{k}(f u, h u), d_{k}(g u, l u)\right\}\right\}\right\}\right), \quad \forall k \geq 1
\end{gathered}
$$

which deduces that

$$
d_{k}^{s+t}(f u, g u) \leq d_{k}^{s+t}(f u, g u)-w\left(d_{k}^{s+t}(f u, g u)\right) \leq d_{k}^{s+t}(f u, g u), \quad \forall k \geq 1,
$$

which implies that $d_{k}(f u, g u)=0$ for each $k \geq 1$. Therefore, $f u=g u$. Hence we come to a conclusion that $f u=g u=h u=l u=u$. Similarly, we can obtain this result in the case of the continuity of f or g or h.

We finally demonstrate that u is a unique common fixed point of f, g, h and l. If $v \in X \backslash\{u\}$ is another common fixed point of f, g, h and l, it is easy to see that from (1.6)

$$
d_{k}^{s+t}(u, v)=d_{k}^{s+t}(f u, g v) \leq d_{k}^{s+t}(u, v)-w\left(d_{k}^{s+t}(u, v)\right) \leq d_{k}^{s+t}(u, v), \quad \forall k \geq 1
$$

which implies that $d_{k}(u, v)=0$ for all $k \geq 1$. That is, $u=v$, which is a contradiction. This completes the proof.

Theorem 2.2. Let the induced metric space (X, d) be complete and f, g, h and l be four self mappings of (X, d) such that $(B 1),(B 3),(B 4)$ and
$(B 5)$ the pairs f, l and g, h are compatible mappings of type (P).
Then f, g, h and l have a unique common fixed point in X.
Proof. As in the proof of Theorem 2.1, we arrive at $\left\{y_{n}\right\}_{n \geq 1}$ is a Cauchy sequence and it converges to a point $u \in X$ by completeness of X. Suppose that l is continuous. It follows that

$$
\lim _{n \rightarrow \infty} l l x_{2 n}=\lim _{n \rightarrow \infty} l y_{2 n}=l u
$$

In view of (B5) we obtain that

$$
\lim _{n \rightarrow \infty} f y_{2 n+1}=\lim _{n \rightarrow \infty} f f x_{2 n}=l u
$$

We subsequently produce that u is a common fixed point of f, g, h and l. It follows from (1.6) that

$$
\begin{aligned}
& d_{k}^{s+t}\left(f y_{2 n+1}, g x_{2 n+1}\right) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l y_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n+1}, l y_{2 n+1}\right),\right.\right.\right. \\
& \left.\left.d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n+1}, g x_{2 n+1}\right)\right\}\right\} \\
& \cup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l y_{2 n+1}, h x_{2 n+1}\right),\right.\right. \\
& \left.d_{k}\left(f y_{2 n+1}, l y_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n+1}, g x_{2 n+1}\right)\right\}, \\
& \\
& \left.\left.q \in\left\{d_{k}\left(f y_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, l y_{2 n+1}\right)\right\}\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
&-w(\max \{ \left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(l y_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n+1}, l y_{2 n+1}\right)\right.\right. \\
&\left.\left.d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n+1}, g x_{2 n+1}\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(l y_{2 n+1}, h x_{2 n+1}\right)\right.\right. \\
&\left.d_{k}\left(f y_{2 n+1}, l y_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(f y_{2 n+1}, g x_{2 n+1}\right)\right\} \\
&\left.\left.\left.q \in\left\{d_{k}\left(f y_{2 n+1}, h x_{2 n+1}\right), d_{k}\left(g x_{2 n+1}, l y_{2 n+1}\right)\right\}\right\}\right\}\right), \quad \forall k \geq 1
\end{aligned}
$$

As $n \rightarrow \infty$ in the above inequality, we infer that

$$
d_{k}^{s+t}(l u, u) \leq d_{k}^{s+t}(l u, u)-w\left(d_{k}^{s+t}(l u, u)\right) \leq d_{k}^{s+t}(l u, u), \quad \forall k \geq 1,
$$

which signifies that $d_{k}(l u, u)=0$ for any $k \geq 1$, that is, $l u=u$. The rest of the proof is the similar as that of Theorem 2.1. This completes the proof.

Remark 2.1. Theorems 2.1 and 2.2 both unify and improve Theorem 2.1 of Huang, Lee and Kang [4] and some results of Theorem 2.1, 2.2 and 2.3 of Liu [7]. The condition ($B 1$) weakens the corresponding condition in Theorem 3.1 of Pathak, Cho, Kang and Lee [17].

3. Applications

In this section, let $(X,\|\cdot\|)$ and $\left(Y,\|\cdot\|_{1}\right)$ be both real Banach spaces, $S \subseteq X$ be the state space, and $D \subseteq Y$ be the decision space. Denote by $B B(S)$ the set of all real-value mappings on S that are bounded on bounded subsets of S. It is easy to verify that $B B(S)$ is a linear space over \mathbb{R} under usual definitions of addition and multiplication by scalars. For $k \geq 1$ and $f, g \in B B(S)$, let

$$
\begin{aligned}
d_{k}(f, g) & =\sup \{|f(x)-g(x)|: x \in \bar{B}(0, k)\} \\
d(f, g) & =\sum_{k=1}^{\infty} 2^{-k} \frac{d_{k}(f, g)}{1+d_{k}(f, g)}
\end{aligned}
$$

where $\bar{B}(0, k)=\{x: x \in S$ and $\|x\| \leq k\}$. Clearly, $\left\{d_{k}\right\}_{k \geq 1}$ is a countable family of pseudometrics on $B B(S)$ and $(B B(S), d)$ is a complete metric space.

Now we study the existence and uniqueness of common solution for the system of functional equations (1.7) in the deduced complete metric space $(B B(S), d)$.

Theorem 3.1. =labelTheorem 3.1. Let $u: S \times D \rightarrow S, T: S \times D \rightarrow S$ and $H_{1}, H_{2}, G_{1}, G_{2}: S \times D \times \mathbb{R} \rightarrow \mathbb{R}$ satisfy the following conditions:
(C1) for given $k \geq 1$ and $a \in B B(S)$, there exists $r(k, a)>0$ such that

$$
\begin{aligned}
& |u(x, y)|+\max \left\{\left|H_{i}(x, y, a(T(x, y)))\right|,\left|G_{i}(x, y, a(T(x, y)))\right|: i \in\{1,2\}\right\} \\
& \leq r(k, a), \quad \forall(x, y) \in \bar{B}(0, k) \times D
\end{aligned}
$$

(C2) there exist $w \in W, s, t \in \mathbb{R}^{+}$and $s+t \geq 1$ such that

$$
\begin{aligned}
& \left|H_{1}(x, y, a(c))-H_{2}(x, y, b(c))\right|^{s+t} \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right),\right.\right.\right. \\
& \left.\left.d_{k}\left(A_{1} a, A_{2} b\right)\right\}\right\} \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(J_{1} a, J_{2} b\right),\right.\right. \\
& \left.d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}, \\
& \left.\left.q \in\left\{d_{k}\left(A_{1} a, J_{2} b\right), d_{k}\left(A_{2} b, J_{1} a\right)\right\}\right\}\right\} \\
& -w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right),\right.\right.\right.\right. \\
& \\
& \left.\left.d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}\right\} \\
& \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right),\right.\right. \\
& \\
& \left.d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}, q \in\left\{d_{k}\left(A_{1} a, J_{2} b\right),\right. \\
& \\
& \left.\left.\left.\left.d_{k}\left(A_{2} b, J_{1} a\right)\right\}\right\}\right\}\right), \\
& \forall(x, y, c) \in \bar{B}(0, k) \times D \times S, k \geq 1,
\end{aligned}
$$

where A_{1}, A_{2}, J_{1} and J_{2} are defined as follows: $\forall(x, a) \in S \times B B(S), i \in\{1,2\}$,

$$
\begin{align*}
& A_{i} a(x)=\underset{y \in D}{\operatorname{opt}}\left\{u(x, y)+H_{i}(x, y, a(T(x, y)))\right\}, \tag{3.2}\\
& J_{i} a(x)=\underset{y \in D}{\operatorname{opt}}\left\{u(x, y)+G_{i}(x, y, a(T(x, y)))\right\}
\end{align*}
$$

(C3) either there exists $A_{i} \in\left\{A_{1}, A_{2}\right\}$ such that for any sequence $\left\{a_{n}\right\}_{n \geq 1} \subset$ $B B(S), a \in B B(S)$ and $k \geq 1$,

$$
\lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|a_{n}(x)-a(x)\right|=0 \Longrightarrow \lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|A_{i} a_{n}(x)-A_{i} a(x)\right|=0
$$

or there exists $J_{i} \in\left\{J_{1}, J_{2}\right\}$ such that for any sequence $\left\{a_{n}\right\}_{n \geq 1} \subset B B(S), a \in$ $B B(S)$ and $k \geq 1$,

$$
\lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|a_{n}(x)-a(x)\right|=0 \Longrightarrow \lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|J_{i} a_{n}(x)-J_{i} a(x)\right|=0
$$

$(C 4) A_{1}(B B(S)) \subseteq J_{2}(B B(S))$ and $A_{2}(B B(S)) \subseteq J_{1}(B B(S))$;
(C5) for any $k \geq 1$ and $i \in\{1,2\}$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|A_{i} J_{i} a_{n}(x)-J_{i} J_{i} a_{n}(x)\right| \\
& =\lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|J_{i} A_{i} a_{n}(x)-A_{i} A_{i} a_{n}(x)\right|=0,
\end{aligned}
$$

whenever $\left\{a_{n}\right\}_{n \geq 1} \subset B B(S)$ is a sequence in $B B(S)$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|A_{i} a_{n}(x)-a(x)\right| \\
& =\lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|J_{i} a_{n}(x)-a(x)\right|=0
\end{aligned}
$$

for some $a \in B B(S)$.
Then the system of functional equations (1.7) possesses a unique common solution in $B B(S)$.

Proof. It follows from ($C 1$) and ($C 2$) that $A_{1}, A_{2} J_{1}$ and J_{2} are self mappings in $B B(S)$. Clearly, ($C 3$) implies that one of A_{1}, A_{2}, J_{1} and J_{2} is continuous, and ($C 5$) means that A_{1}, J_{1} and A_{2}, J_{2} are compatible mappings of type (A).

Presume that opt $y_{y \in D}=\inf _{y \in D}$. Let $a, b \in B B(S), k \geq 1, x \in \bar{B}(0, k)$ and $\varepsilon>0$. In terms of (3.2) we deduce that there exist $y, z \in D$ such that

$$
\begin{align*}
& A_{1} a(x)>u(x, y)+H_{1}(x, y, a(T(x, y)))-\varepsilon \tag{3.3}\\
& A_{2} b(x)>u(x, z)+H_{2}(x, z, b(T(x, z)))-\varepsilon \tag{3.4}
\end{align*}
$$

It is clear that

$$
\begin{align*}
& A_{1} a(x) \leq u(x, z)+H_{1}(x, z, a(T(x, z))), \tag{3.5}\\
& A_{2} b(x) \leq u(x, y)+H_{2}(x, y, b(T(x, y))) . \tag{3.6}
\end{align*}
$$

(3.4) together with (3.5) leads to

$$
\begin{align*}
& A_{1} a(x)-A_{2} b(x) \\
& <H_{1}(x, z, a(T(x, z)))-H_{2}(x, z, b(T(x, z)))+\varepsilon \tag{3.7}\\
& \leq\left|H_{1}(x, z, a(T(x, z)))-H_{2}(x, z, b(T(x, z)))\right|+\varepsilon
\end{align*}
$$

From (3.3) and (3.6) we know that

$$
\begin{align*}
& A_{1} a(x)-A_{2} b(x) \\
& >H_{1}(x, y, a(T(x, y)))-H_{2}(x, y, b(T(x, y)))-\varepsilon \tag{3.8}\\
& \geq-\left|H_{1}(x, y, a(T(x, y)))-H_{2}(x, y, b(T(x, y)))\right|-\varepsilon .
\end{align*}
$$

It follows from (3.7) and (3.8) that

$$
\begin{aligned}
& \left|A_{1} a(x)-A_{2} b(x)\right| \\
& \leq \max \left\{\left|H_{1}(x, y, a(T(x, y)))-H_{2}(x, y, b(T(x, y)))\right|,\right. \\
& \left.\quad\left|H_{1}(x, z, a(T(x, z)))-H_{2}(x, z, b(T(x, z)))\right|\right\}+\varepsilon .
\end{aligned}
$$

By means of (3.1), the above inequality and the mean value theorem, we have

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
A_{1} a(x)-\left.A_{2} b(x)\right|^{s+t} \\
\leq\left(\operatorname { m a x } \left\{\left|H_{1}(x, y, a(T(x, y)))-H_{2}(x, y, b(T(x, y)))\right|,\right.\right. \\
\left.\left.\qquad\left|H_{1}(x, z, a(T(x, z)))-H_{2}(x, z, b(T(x, z)))\right|\right\}+\varepsilon\right)^{s+t} \\
\leq\left(\operatorname { m a x } \left\{\left|H_{1}(x, y, a(T(x, y)))-H_{2}(x, y, b(T(x, y)))\right|,\right.\right. \\
\\
\left.\left.\quad\left|H_{1}(x, z, a(T(x, z)))-H_{2}(x, z, b(T(x, z)))\right|\right\}\right)^{s+t} \\
\quad+(s+t)(2 r(k, a)+\varepsilon)^{s+t-1} \varepsilon \\
\leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}\right\}\right. \\
\quad \cup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right),\right.\right. \\
\left.\left.\left.\quad d_{k}\left(A_{1} a, A_{2} b\right)\right\}, q \in\left\{d_{k}\left(A_{1} a, J_{2} b\right), d_{k}\left(A_{2} b, J_{1} a\right)\right\}\right\}\right\} \\
-w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right),\right.\right.\right.\right. \\
\left.\left.\quad d_{k}\left(A_{1} a, A_{2} b\right)\right\}\right\} \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(J_{1} a, J_{2} b\right),\right.\right. \\
\left.\quad d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}, \\
\left.\left.\left.\quad q \in\left\{d_{k}\left(A_{1} a, J_{2} b\right), d_{k}\left(A_{2} b, J_{1} a\right)\right\}\right\}\right\}\right) \\
\quad+(s+t)(2 r(k, a)+\varepsilon)^{s+t-1} \varepsilon,
\end{array}\right.
\end{aligned}
$$

which gives that

$$
\begin{aligned}
& d_{k}^{s+t}\left(A_{1} a, A_{2} b\right) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right),\right.\right.\right. \\
& \left.\left.d_{k}\left(A_{1} a, A_{2} b\right)\right\}\right\} \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(J_{1} a, J_{2} b\right),\right.\right. \\
& \left.d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}, \\
& \left.\left.q \in\left\{d_{k}\left(A_{1} a, J_{2} b\right), d_{k}\left(A_{2} b, J_{1} a\right)\right\}\right\}\right\} \\
& -w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right),\right.\right.\right.\right. \\
& \\
& \left.\left.d_{k}\left(A_{1} a, A_{2} b\right)\right\}\right\} \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(J_{1} a, J_{2} b\right),\right.\right. \\
& \\
& \left.d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}, \\
& \left.\left.\left.\quad q \in\left\{d_{k}\left(A_{1} a, J_{2} b\right), d_{k}\left(A_{2} b, J_{1} a\right)\right\}\right\}\right\}\right) \\
& +(s+t)(2 r(k, a)+\varepsilon)^{s+t-1} \varepsilon .
\end{aligned}
$$

Similarly we get that (3.9) also holds for $\operatorname{opt}_{y \in D}=\sup _{y \in D}$. Letting $\varepsilon \rightarrow 0$ in (3.9), we deduce that

$$
\begin{aligned}
& d_{k}^{s+t}\left(A_{1} a, A_{2} b\right) \\
& \leq \max \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right),\right.\right.\right. \\
& \left.\left.\quad d_{k}\left(A_{1} a, A_{2} b\right)\right\}\right\} \cup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right),\right.\right. \\
& \left.\left.\left.\quad d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}, q \in\left\{d_{k}\left(A_{1} a, J_{2} b\right), d_{k}\left(A_{2} b, J_{1} a\right)\right\}\right\}\right\} \\
& -w\left(\operatorname { m a x } \left\{\left\{p^{s} q^{t}: p, q \in\left\{d_{k}\left(J_{1} a, J_{2} b\right), d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right),\right.\right.\right.\right. \\
& \\
& \left.\left.d_{k}\left(A_{1} a, A_{2} b\right)\right\}\right\} \bigcup\left\{p^{s}\left(\frac{q}{2}\right)^{t}, p^{t}\left(\frac{q}{2}\right)^{s}: p \in\left\{d_{k}\left(J_{1} a, J_{2} b\right),\right.\right. \\
& \left.d_{k}\left(A_{1} a, J_{1} a\right), d_{k}\left(A_{2} b, J_{2} b\right), d_{k}\left(A_{1} a, A_{2} b\right)\right\}, \\
& \left.\left.\left.q \in\left\{d_{k}\left(A_{1} a, J_{2} b\right), d_{k}\left(A_{2} b, J_{1} a\right)\right\}\right\}\right\}\right) .
\end{aligned}
$$

Theorem 2.1 ensures that A_{1}, A_{2}, J_{1} and J_{2} have a unique common fixed point $j \in B B(S)$. That is, j is a unique common solution of the system of functional equations (1.7). This completes the proof.

As in the proof of Theorem 3.1, we have the following result.
Theorem 3.2. Let $u: S \times D \rightarrow S, T: S \times D \rightarrow S$ and $H_{1}, H_{2}, G_{1}, G_{2}$: $S \times D \times \mathbb{R} \rightarrow \mathbb{R}$ satisfy $(C 1),(C 2),(C 3),(C 4)$ and
(C6) for any $k \geq 1$ and $i \in\{1,2\}$,

$$
\lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|A_{i} A_{i} a_{n}(x)-J_{i} J_{i} a_{n}(x)\right|=0,
$$

whenever $\left\{a_{n}\right\}_{n \geq 1} \subset B B(S)$ is a sequence in $B B(S)$ such that

$$
\lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|A_{i} a_{n}(x)-a(x)\right|=\lim _{n \rightarrow \infty} \sup _{x \in \bar{B}(0, k)}\left|J_{i} a_{n}(x)-a(x)\right|=0
$$

for some $a \in B B(S)$.
Then the system of functional equations in (1.7) possesses a unique common solution in $B B(S)$.

Acknowledgement. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References

[1] R. Bellman and E. S. Lee, Functional equations arising in dynamic programming, Aequationes Math. 17 (1978), 1-18.
[2] P. C. Bhakta and S. R. Choudhury, Some existence theorems for functional equations arising in dynamic programming II, J. Math. Anal. Appl. 131 (1988), 217-231.
[3] P. C. Bhakta and S. Mitra, Some existence theorems for functional equations arising in dynamic programming, J. Math. Anal. Appl. 98 (1984), 348-362.
[4] N. J. Huang, B. S. Lee and M. K. Kang, Common fixed point theorems for compatible mappings with applications to the solutions of functional equations arising in dynamic programming, Int. J. Math. Math. Sci. 20 (1997), 673-680.
[5] Z. Liu, Existence theorems of solutions for certain classes of functional equations arising in dynamic programming, J. Math. Anal. Appl. 262 (2001), 529-553.
[6] Z. Liu, Coincidence theorems for expansive mappings with applications to the solutions of functional equations arising in dynamic programming, Acta Sci. Math. (Szeged) 65 (1999), 359-369.
[7] Z. Liu, Compatible mappings and fixed points, Acta Sci. Math. (Szeged) 65 (1999), 371-383
[8] Z. Liu, A note on unique common fixed point, Bull. Cal. Math. Soc. 85 (1993), 469-472.
[9] Z. Liu, R. P. Agarwal and S. M. Kang, On solvability of functional equations and system of functional equations arising in dynamic programming, J. Math. Anal. Appl. 297 (2004), 111-130.
[10] Z. Liu and S. M. Kang, Properties of solutions for certain functional equations arising in dynamic programming, J. Global Optim. 34 (2006), 273-292.
[11] Z. Liu and S. M. Kang, Existence and uniqueness of solutions for two classes of functional equations arising in dynamic programming, Acta Math. Appl. Sini. 23 (2007), 195-208.
[12] Z. Liu and J. K. Kim , A common fixed point theorem with applications in dynamic programming, Nonlinear Funct.Anal. and Appl. 1 (2006), 11-19.
[13] Z. Liu and J. S. Ume, On properties of solutions for a class of functional equations arising in dynamic programming, J. Optim. Theory Appl. 117 (2003), 533-551.
[14] Z. Liu, J. S. Ume and S. M. Kang, Some existence theorems for functional equations arising in dynamic programming, J. Korean Math. Soc. 43 (2006), 11-28.
[15] Z. Liu, Y. Xu, J. S. Ume and S. M. Kang, Solutions to two functional equations arising in dynamic programming, J. Comput. Appl. Math. 192 (2006), 251-269.
[16] H. K. Pathak and B. Fisher, Common fixed point theorems with applications in dynamic programming, Glasnik Mate. 31 (1996), 321-328.
[17] H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, Fixed points theorems for compatible mappings of type (P) and applications to dynamic programming, Le Matematiche. \mathbf{L} (1995), 15-33.
[18] B. N. Ray, On common fixed points in metric spaces, Indian J. Pure Appl. Math. 19 (10) (1988), 960-962.

Guojing Jiang
Dalian Vocational Technical College
Dalian, Liaoning 116035, People's Republic of China
E-mail address: jiangguojing@dl.cn
Min Liu
Department of Mathematics
Liaoning Normal University
P. O. Box 200, Dalian, Liaoning 116029, People's Republic of China

E-mail address: min_liu@yeah.net
Suk Jin Lee and Shin Min Kang
Department of Mathematics and the Research Institute of Natural Science
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: smkang@gnu.ac.kr

[^0]: Received January 3, 2008, Accepted September 10, 2008.
 2000 Mathematics Subject Classification. 54H25, 49L20, 49L99.
 Key words and phrases. Common fixed point, compatible mappings of type (A), compatible mappings of type (P), countable family of pseudometrics, induced metric space, system of functional equations, common solution.

 * Corresponding author.

