DOI QR코드

DOI QR Code

Electrocatalytic Reduction of Dioxygen at Glassy Carbon Electrodes with Irreversible Self-assembly of N-hexadecyl-N'-methyl Viologen

  • Lee, Chi-Woo (Department of Chemistry, College of Natural Sciences, Korea University) ;
  • Jang, Jai-Man (Department of Chemistry, College of Natural Sciences, Korea University)
  • Published : 1994.07.20

Abstract

The electroreduction of dioxygen at glassy carbon electrodes with irreversible self-assembly of N-hexadecyl-N'-methyl viologen $(C_{16}VC_1)$ proceeds at potentials more positive than those where the reduction occurs at bare electrodes. The electrocatalyzed reduction takes place at potentials well ahead of those where the catalyst is reduced in the absence of dioxygen and the limiting currents observed at rotating disk electrodes did not deviate from the thoretical Levich line up to 6400 rpm, indicating that the electrocatalysis is extremely rapid. The rate constant for the heterogeneous reaction between $C_{16}V^+C_1$ immobilized on the electrode surface and $O_2$ in solution was estimated to be ca. $10^8\;M^{-1}s^{-1}$. The half-wave potential of dioxygen reduction was independent of solution pH.

Keywords

References

  1. Biochim. Biophys. Acta v.314 Farrington, J. A.;Ebert, M.;Land, E. J.;Fletcher, K.
  2. Biochim. Biophys. Acta v.333 Thorneley, R. N. F.
  3. J. Chem. Soc. F. T. I v.74 Farrington, J. A.;Ebert, M.;Land, E. J.
  4. J. Electroanal. Chem. Interfac. Electrochem. v.139 Martigny, P.;Anson, F. C.
  5. J. Phys. Chem. v.87 Oyama, N.;Oki, N.;Ohno, H.;Ohnuki, Y.;Matsuda, H.;Tsuchida, E.
  6. Bull. Korean Chem. Soc. v.11 Lee. C.-W.;Jang, J.-M.;Shin, D. S.
  7. Molecular Design of Electrode Surfaces Andrieux, C. P.;Saveant, J.-M;Murray, R. W(Ed.)
  8. J. Macromol. Sci. Phys. v.B17 Tsuchida, E.;Osada, Y.;Ohno, H.
  9. J. Electroanal. Chem. Interfac. Electrochem. v.239 Lee. C.-W.;Bard, A. J.
  10. J. Electroanal. Chem. Interfac. Electrochem. v.344 Xie, Y.;Anson, F. A.
  11. Photochem. Photobiol. v.31 Pileni, M.-P.;Braun,A. M.;Gratzel, M.
  12. J. Am. Chem. Soc. v.104 Tundo, P.;Kippenberger, D. J.;Politi, M. J.;Klahn, P.;Fendler, J. H.
  13. Chem. Soc. Rev. v.10 Bird, C. L.;Kuhn, A, T.
  14. Electrochemical Methods Bard, A. J.;Faulkner, L. R.
  15. J. Phys. Chem. v.86 Shigehara, K.;Anson, F. C.
  16. Physicochemical Hydrodynamics Levich, V. G.
  17. J. Electroanal. Chem. Interfac. Electrochem. v.305 Jiang, R.;Anson, F. C.
  18. J. Am. Chem. Soc. v.103 Sawyer, D. T.;Nanni, E. J., Jr.;Angelis, C. T.;Dickson, J.
  19. J. Electroanal. Chem. Interfac. Electrochem. v.256 Pospisil, L.;Fuoco, R.;Papoff, P.
  20. J. Electroanal. Chem. Interfac. Electrochem. v.134 Durand, R.;Anson, F. C.
  21. J. Electroanal. Chem. Interfac. Electrochem. v.229 Websley, W. S.;Durand, Jr., R. R.;Anson, F. C.
  22. J. Chem. Soc. Chem. Comm. Farrington, J. A.
  23. J. Am. Chem. Soc. v.109 Novakoic, V.;Hoffman, M. Z.
  24. J. Phys. Chem. v.85 Rocklin, R. D.;Murray, R. W.

Cited by

  1. Methyl Viologen Mediated Oxygen Reduction in Ethanol Solvent: the Electrocatalytic Reactivity of the Radical Cation vol.4, pp.2, 1994, https://doi.org/10.5229/jecst.2013.4.2.71
  2. The Reactivity of Selenite toward Methyl Viologen in Mildly Acidic Aqueous Solutions vol.164, pp.13, 1994, https://doi.org/10.1149/2.0681713jes