• 제목/요약/키워드: natural convection

검색결과 848건 처리시간 0.027초

잠열축열시스템의 축열과정에서 자연대류의 영향에 관한 연구 (Effect of Natural Convection on the Heat Transfer in a Latent Heat Storage System)

  • 유승남;한귀영
    • 태양에너지
    • /
    • 제19권2호
    • /
    • pp.29-36
    • /
    • 1999
  • Heat transfer characteristics of a low temperature latent heat storage system during the heat storage stage was examined for the circular finned tubes using fatty acid which shows the big density difference during melting as phase change materials. The heat storage vessel has the dimension of 530 mm height, 74 mm inside diameter and inner heat transfer tube is 480 mm in height and 13.5 mm outside diameter. Hot water was employed as the heat transfer fluid. During the heat storage stage, it was found that both conduction and natural convection were the major heat transfer mechanism. It was also found that the effect of natural convection on the heat transfer was more significant for the unfinned tube system than that for the finned tube system. The experimentally determined overall heat transfer coefficients were in the range of $50{\sim}250W/m^2K$ and the correlation for natural convection heat transfer as a function of Nusselt and Rayleigh number was proposed.

  • PDF

직사각형 공동 내부 자연연대류 문제에 대한 k-epsilon-vv-f 난류모델의 평가 (Evaluation of the K-Epsilon-VV-F Turbulence Model for Natural Convection in a Rectangular Cavity)

  • 최석기;김성오;김의광;최훈기
    • 한국전산유체공학회지
    • /
    • 제7권4호
    • /
    • pp.8-18
    • /
    • 2002
  • The primary objective of the present study is evaluation of the k-ε-vv-f turbulence model for prediction of natural convection in a rectangular cavity. As a comparative study, the two-layer k-ε model is also considered. Both models, with and without algebraic heat flux model, are applied to the analysis of natural convection in a rectangular cavity. The performances of turbulence models are investigated through comparison with available experimental data. The predicted results of vertical velocity component, turbulent heat fluxes, turbulent shear stress, local Nusselt number and wall shear stress are compared with experimental data. It is shown that, among the turbulence models considered in the present study, the k-ε-vv-f model with an algebraic heat flux model predicts best the vertical mean velocity and velocity fluctuation, and the inclusion of algebraic heat flux model slightly improves the accuracy of results.

원형 히트싱크의 자연대류 해석 (Analysis of Natural Convection around Radial Heat Sink)

  • 유승환;이관수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1172-1176
    • /
    • 2009
  • In the present study, natural convection over a heat sink with a horizontal circular base and rectangular fins was numerically analyzed. To calculate natural convection heat transfer, the assumptions of ideal gas and laminar flow were made for air. Flow patterns around the heat sink were chimney-like. The resultant temperature distribution on the circular base appeared almost uniform. Parametric studies were performed to compare the effects of fin length, fin height, the ideal number of fins, and heat flux on the average temperature of a heat sink and the average heat transfer coefficient from the heat sink array. Correlation to predict the average Nusselt number was presented.

  • PDF

2차원 캐비티내 자연대류 열전달에 대한 열전도 물체의 영향 (Effect of a Centered Conducting Body on Natural Convection Heat Transfer in a Two-Dimensional Cavity)

  • 명현국;김종은
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.79-84
    • /
    • 2005
  • The numerical solutions are examined on the effect of a centered heat conducting body on natural convection in a 2-D square cavity. The influences of the Rayleigh number, the dimensionless conducting body size, and the ratio of the thermal diffusivity of the body to that of the fluid have been investigated on the natural convection heat transfer in overall concerned region. The analysis reveals that the fluid flow and heat transfer processes are governed by all of them. Results for isotherms, vector plots and wall Nusselt numbers are reported for Pr = 0.71 and relatively wide ranges of the other parameters. Heat transfer across the cavity, in comparison to that in the absence of a body, are enhanced (reduced) in general by a body with a thermal diffusivity ratio less (greater) than unity. The heat transfer are also found to attain a minimum as the body size is increased.

  • PDF

Ellipting Blending Model을 사용하여 자연대류 해석 시 난류 열유속 처리법 비교 (COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC BLENDING SECOND MOMENT CLOSURE)

  • 최석기;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.171-176
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic mlending second moment closure for a natural convection is performed. Four cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH) the algebraic flux model (AFM) and the differential heat flux model (DFM). These models are implemented in the computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the experimental data. The results show that three models produce nearly the same accuracy of solutions.

  • PDF

동결과정을 포함한 다공층에서 자연대류에 대한 유한요소 해석 (Finite element solutions of natural convection in porous media under the freezing process)

  • 이문희;최종욱;서석진;박찬국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.51-56
    • /
    • 2000
  • The Finite Element Solutions Is reported on solid-liquid phase change in porous media with natural convection including freezing. The model is based on volume averaged transport equations, while phase change is assumed to occur over a small temperature range. The FEM (Finite Element Method) algorithm used in this study is 3-step time-splitting method which requires much less execution time and computer storage the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the energy equation. For natural convection including melting and solidification the numerical results show reasonable agreement with FDM (Finite Difference Method) results.

  • PDF

원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구 (A Numerical Study of Natural Convection in a Square Enclosure with a Circular Cylinder at Different Vertical Locations)

  • 김병수;이대성;윤현식;이현구;하만영
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.273-282
    • /
    • 2007
  • Numerical calculations are carried out for the natural convection induced by temperature difference between a cold outer square cylinder and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on finite volume method, for different Rayleigh numbers varying over the range of $10^4\;to\;10^6$. The study goes further to investigate the effect of an inner cylinder location on the heat transfer and fluid flow. The location of inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of cell strongly depend on Rayleigh number and the position of inner circular cylinder. The changes in heat transfer quantities have been presented.

안내판을 가진 사각 및 평행사변형이 조합된 복합밀폐공간에서의 자연대류 열전달에 관한 연구 (A Study of Natural Convection Heat Transfer in a Composed Rectangular-Parallelogrammic Enclosure with a Guide Vane)

  • 장영근;조운
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.619-626
    • /
    • 2001
  • The present experimental and numerical study investigate flow and natural convection heat transfer characteristics of a composed rectangular-parallelogrammic enclosure with a guide vane. The governing equations for the two-dimensional, laminar, natural convection process in an enclosure are discretized by the control volume approach which insures the conservative characteristics to be satisfied in the calculation domain, and solved by a modified SIMPLE algorithm. The momentum and energy equations are coupled through the buoyancy term. In this results of experimental study, the natural convection heat transfer characteristics was well coincided with conclusions of other earlier experimental researches and numerical analysis.

극저온용기 액체헬륨 표면 상부의 열전달 특성 (Heat Transfer above Liquid Helium Surface in Cryostat)

  • 최연석;김동락;신동원
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.147-152
    • /
    • 2011
  • The cryogenic cooling load from the top plate of cryostat to liquid helium surface, including wall conduction, thermal radiation and current leads, is investigated in a closed cryostat system for superconducting magnet. In general methods of load estimation, individual load is calculated separately, however they are actually coupled each other because of natural convection of helium vapor. Using relevant heat transfer analysis, we calculate cryogenic load with taking into account the effect of natural convection. Cryogenic load is under-estimated approximately 1% when the natural convection is ignored. The difference between actual cooling load and cooling load by individual calculation increases with supplying current.

사각형 공간 내의 난류 자연대류 수치해석 모델에 관한 연구 (Study on the numerical modeling of turbulent natural convection in rectangular enclosure)

  • 정효민;이철재;정한식
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.33-39
    • /
    • 2000
  • There are many under going researchs for the natural convection and fluid flow in rectangular enclosure. In this paper, the optimal model that is the most frequently used for the analysis of a turbulent natural convection in rectangular enclosure is suggested by comparing with the result of Cheesewright's experiment. As We can see the distribution of the velocity, temperature, and turbulent kinitic energy, ST model tends to exaggerate the result of the experiment. The LS model generates better experimental result than the ST and DA's. Therefore, it is resonable to adopt the LS model that contains explicit physical meanings of each term in eouation of turbulent kinitic energy.

  • PDF