DOI QR코드

DOI QR Code

Heat Transfer above Liquid Helium Surface in Cryostat

극저온용기 액체헬륨 표면 상부의 열전달 특성

  • 최연석 (한국기초과학지원연구원 물성과학연구부) ;
  • 김동락 (한국기초과학지원연구원 물성과학연구부) ;
  • 신동원 (한국기초과학지원연구원 물성과학연구부)
  • Received : 2010.08.09
  • Accepted : 2011.01.03
  • Published : 2011.02.10

Abstract

The cryogenic cooling load from the top plate of cryostat to liquid helium surface, including wall conduction, thermal radiation and current leads, is investigated in a closed cryostat system for superconducting magnet. In general methods of load estimation, individual load is calculated separately, however they are actually coupled each other because of natural convection of helium vapor. Using relevant heat transfer analysis, we calculate cryogenic load with taking into account the effect of natural convection. Cryogenic load is under-estimated approximately 1% when the natural convection is ignored. The difference between actual cooling load and cooling load by individual calculation increases with supplying current.

Keywords

References

  1. Van Sciver, S. W., 1986, Helium Cryogenics, Plenum Press, New York.
  2. Wilson, M. N., 1986, Superconducting Magnets, Clarendon Press, Oxford
  3. White, G. K., 1989, Experimental Techniques in Low-temperature Physics, Clarendon Press, Oxford.
  4. Barron, R. F., 1999, Cryogenic Heat Transfer, Taylor and Francis
  5. Flynn, T. M., 1997, Cryogenic Engineering, Marcel Dekker, New York.
  6. Chang, H. M., Choi, Y. S. and Van Sciver, S. W., 2002, Optimization of operating temperature in cryocooled HTS magnets for compactness and efficiency, Cryogenics, Vol. 42, pp. 787-794. https://doi.org/10.1016/S0011-2275(02)00147-9
  7. Sato, A., Miki, T., Matsumoto, F., Nagai, H., Wada, H., Ito, S., and Kawate, Y., 1999, Development of superfluid-cooled cryostat for 1 GHz NMR spectrometer, Proceedings of ICEC 17, pp. 613-616.
  8. Wang, L., Wu, H., Li, L. K., Green, M. A., Liu, C. S., Li, S. Y., Jia, L. X., and Virostek, S. P., 2008, The helium cooling system and cold mass support system for the MICE coupling solenoid, IEEE Transactions on Applied Superconductivity, Vol. 18, pp. 941-944. https://doi.org/10.1109/TASC.2008.921252
  9. Chang, H. M., Choi, Y. S., Van Sciver, S. W., and Choi, K. D., 2003, Cryogenic cooling system of HTS transformers by natural convection of subcooled liquid nitrogen, Cryogenics, Vol. 43, pp. 589-596. https://doi.org/10.1016/S0011-2275(03)00168-1
  10. Incropera, F. P. and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, John Wiley and Sons
  11. Hassani, A. V. and Hollands, K. G. T., 1990, Conduction shape factor for a region of uniform thickness surrounding a three-dimensional body of arbitrary shape, Journal of Heat Transfer, Vol. 112, pp. 492-495. https://doi.org/10.1115/1.2910405
  12. Bender, C. M. and Orszag, S. A., 1978, Advanced Mathematical Methods for Scientist and Engineers, McGraw Hill.
  13. Choi, Y. S., Painter, T. A., Kim, D. L., Lee, B. S., Yang, H. S., and Miller, J. R., 2007, Conceptual design of current leads for a 21T FTICR magnet system, IEEE Transactions on Applied Superconductivity, Vol. 17, pp. 2228- 2231. https://doi.org/10.1109/TASC.2007.898179