• Title/Summary/Keyword: national food

Search Result 26,504, Processing Time 0.054 seconds

EFFECTS OF SUBCHRONIC PATERNAL EXPOSURE TO CYCLOPHOSPHAMIDE AND ACROLEIN ON MALE FERTILITY AND EARLY EMBRYONIC DEVELOPMENT IN RATS

  • Oran-Kwon;Kwack, Seung-Jun;Shin, Jae-Ho;Kim, Soon-Sun;Sohn, Kyung-Hee;Kim, So-Hee;Lee, Rhee-Da;Kim, Byung-Ho;Park, Chul-Hoon;Ha, Won-Kwang;Park, Kui-Lea
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.138-138
    • /
    • 2001
  • The purpose of the present studies was to investigate the effects of subchronic paternal treatment of cyclophosphamide (CP) and acrolein on male fertility and early embryonic development. Two approaches were pursued. The first was to perform in vivo test for observing the adverse effects of CP and acrolein on the function og male reproductive system and pregnancy outcome.(omitted)

  • PDF

Shelf-life Extension of Raw Oyster Crassostrea gigas by Depuration Process (인공정화에 의한 참굴(Crassostrea gigas)의 유통기한 연장)

  • Lee, Do-Ha;Kang, Dong-Min;Park, Seul-Ki;Jeong, Min-Chul;Kang, Min-Gyun;Jo, Du-Min;Lee, Jae-Hwa;Lee, Da-Eun;Sim, Yoon-Ah;Jeong, Geum-Jae;Cho, Kyung-Jin;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.842-850
    • /
    • 2020
  • The objective of this study was to evaluate the effect of the depuration process (artificial seawater sterilization using UV light) for extending the shelf life of raw oyster Crassostrea gigas and maintaining food quality. To confirm the effects of depuration, microbiological (viable cell count) and several physiochemical analyses (pH and glycogen levels in shucked oyster and pH, soluble protein, and turbidity in filling water) were carried out during the storage of raw oysters. The results showed that depuration could effectively extend the shelf life (2-3 days) of raw oysters with minimal change in food quality, including pH and glycogen content. Thus, the depuration process proposed in this study could successfully be applied to processing practices for other shellfish to extend their shelf life and contribute to the management of seafood safety issues.

Development and validation of an analytical method for the quantification of 2,6-diisopropylnaphthalene in agricultural products using GC-MS/MS

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Chung, Yun mi;Choi, Ha na;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • An analytical method was developed and optimized for the quantification of a plant growth regulator, 2,6-diisopropylnaphthalene (2,6-DIPN), in agricultural products using gas chromatography-tandem mass spectrometry. The samples were extracted, partitioned, and were purified using a Florisil® cartridge. To validate the analytical method, its specificity, linearity, limit of detection (LOD) and limit of quantification (LOQ) of the instrument, LOQ of the analytical method (MLOQ), accuracy, and repeatability were considered. The method displayed excellent results during validation, and is suitable for the determination and quantification of the low residual levels of the analyte in the agricultural samples. All of the results with the optimized method were satisfactory and within the criteria ranges requested in the Codex Alimentarius Commission guidelines and the Ministry of Food and Drug Safety guidelines for pesticide residue analysis. The developed method is simple and accurate and can be used as a basis for safety management of 2,6-DIPN.

Potential for Dependence on Lisdexamfetamine - In vivo and In vitro Aspects

  • Yun, Jaesuk;Lee, Kwang-Wook;Eom, Jang-Hyeon;Kim, Young-Hoon;Shin, Jisoon;Han, Kyoungmoon;Park, Hye-Kyung;Kim, Hyung Soo;Cha, Hye Jin
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.659-664
    • /
    • 2017
  • Although lisdexamfetamine is used as a recreational drug, little research exists regarding its potential for dependence or its precise mechanisms of action. This study aims to evaluate the psychoactivity and dependence profile of lisdexamfetamine using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques are used to assess alterations in the dopamine levels in striatal synaptosomes following administration of lisdexamfetamine. Lisdexamfetamine increased both conditioned place preference and self-administration. Moreover, after administration of the lisdexamfetamine, dopamine levels in the striatal synaptosomes were significantly increased. Although some modifications should be made to the analytical methods, performing high performance liquid chromatography studies on synaptosomes can aid in predicting dependence liability when studying new psychoactive substances in the future. Collectively, lisdexamfetamine has potential for dependence possible via dopaminergic pathway.

Development of a Quantitative Analytical Method for Determining the Concentration of Human Urinary Paraben by LC-MS/MS

  • Lee, Seung-Youl;Son, Eunjung;Kang, Jin-Young;Lee, Hee-Seok;Shin, Min-Ki;Nam, Hye-Seon;Kim, Sang-Yub;Jang, Young-Mi;Rhee, Gyu-Seek
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1131-1136
    • /
    • 2013
  • Parabens, the esters of p-hydroxybenzoic acid, have been widely used as antimicrobial preservatives in cosmetic products, drugs, and processed foods and beverages. However, some parabens have been shown to have weak estrogenic effects through in vivo and in vitro studies. Because such widespread use has raised concerns about the potential human health risks associated with exposure to parabens, we developed a simultaneous analytical method to quantify 4 parabens (methyl, ethyl, propyl, and butyl) in human urine, by using solid-phase extraction and high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. This method showed good specificity, linearity ($R^2$ > 0.999), accuracy (92.2-112.4%), precision (0.9-9.6%, CV), and recovery (95.7-102.0%). The LOQs for the 4 parabens were 1.0, 0.5, 0.2, and 0.5 ng/mL, respectively. This method could be used for quick and accurate analysis of a large number of human samples in epidemiological studies to assess the prevalence of human exposure to parabens.