Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.4.1131

Development of a Quantitative Analytical Method for Determining the Concentration of Human Urinary Paraben by LC-MS/MS  

Lee, Seung-Youl (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Son, Eunjung (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Kang, Jin-Young (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Lee, Hee-Seok (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Shin, Min-Ki (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Nam, Hye-Seon (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Kim, Sang-Yub (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Jang, Young-Mi (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Rhee, Gyu-Seek (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
Publication Information
Abstract
Parabens, the esters of p-hydroxybenzoic acid, have been widely used as antimicrobial preservatives in cosmetic products, drugs, and processed foods and beverages. However, some parabens have been shown to have weak estrogenic effects through in vivo and in vitro studies. Because such widespread use has raised concerns about the potential human health risks associated with exposure to parabens, we developed a simultaneous analytical method to quantify 4 parabens (methyl, ethyl, propyl, and butyl) in human urine, by using solid-phase extraction and high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. This method showed good specificity, linearity ($R^2$ > 0.999), accuracy (92.2-112.4%), precision (0.9-9.6%, CV), and recovery (95.7-102.0%). The LOQs for the 4 parabens were 1.0, 0.5, 0.2, and 0.5 ng/mL, respectively. This method could be used for quick and accurate analysis of a large number of human samples in epidemiological studies to assess the prevalence of human exposure to parabens.
Keywords
Paraben; Human urine; Triple quadrupole mass spectrometry; Simultaneous analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Soni, M. G.; Carabin, I. G.; Burdock, G. A. Food Chem. Toxicol. 2005, 43, 985.   DOI   ScienceOn
2 CIR Expert Panel. Int. J. Toxicol. 2009, 27, 1.
3 Weber, R. W. Ann. Allergy 1993, 70, 183.
4 Elder, R. L. J. Am. Coll. Toxicol. 1984, 3, 147.   DOI
5 Okubo, T.; Yokoyama, Y.; Kano K.; Kano, I. Food Chem. Toxicol. 2001, 39, 1225.   DOI   ScienceOn
6 Byford, J. R.; Shaw, L. E.; Drew, M. G.; Pope, G. S.; Sauer, M. J.; Darbre, P. D. J. Steroid Biochem. Mol. Biol. 2002, 80, 49.   DOI   ScienceOn
7 Darbre, P. D.; Aljarrah, A.; Miller, W. R.; Coldham, N. G.; Sauer, M. J.; Pope, G. S. J. Appl. Toxicol. 2004, 24, 5.   DOI   ScienceOn
8 Darbre, P. D.; Byford, J. R.; Shaw, L. E.; Hall, S.; Coldham, N. G.; Pope, G. S.; Sauer, M. J. J. Appl. Toxicol. 2003, 23, 43.   DOI   ScienceOn
9 Darbre, P. D.; Byford, J. R.; Shaw, L. E.; Horton, R. A.; Pope, G. S.; Sauer, M. J. J. Appl. Toxicol. 2002, 22, 219.   DOI   ScienceOn
10 Lemini, C.; Jaimez, R.; Avila, M. E.; Franco, Y.; Larrea, F.; Lemus, A. E. Toxicol. Ind. Health 2003, 19, 69.   DOI   ScienceOn
11 Pugazhendhi, D.; Pope, G. S.; Darbre, P. D. J. Apple Toxicol. 2005,25, 301.   DOI   ScienceOn
12 Oishi, S. Toxicol. Ind. Health. 2001, 17, 31.   DOI   ScienceOn
13 Oishi, S. Food Chem. Toxicol. 2002, 40, 1807.   DOI   ScienceOn
14 Oishi, S. Food Chem. Toxicol. 2004, 42, 1845.   DOI   ScienceOn
15 Kang, K. S.; Che, J. H.; Ryu, D. Y.; Kim, T. W.; Li, G. X.; Lee, Y. S. J. Vet. Med. Sci. 2002, 64, 227.   DOI   ScienceOn
16 Tavares, R. S.; Martins, F. C.; Oliveira, P. J.; Ramalho-Santos, J.; Peixoto, F. P. Reprod. Toxicol. 2009, 27, 1.   DOI   ScienceOn
17 Kiwada, H.; Awazu, S.; Hanano, M. J. Pharmacobio. Dyn. 1979,2, 356.   DOI
18 Kiwada, H.; Awazu, S.; Hanano, M. J. Pharmacobio. Dyn. 1980,3, 353.   DOI
19 Ye, X. Y.; Bishop, A. M.; Reidy, J. A.; Needham, L. L.; Calafat, A. M. Environ. Health Perspect 2006a, 114, 1843.
20 Julie, B.; Camilla, T.; Sofie, C.; Ulla, H. Reprod. Toxicology 2010,30, 301.   DOI   ScienceOn
21 Janjua, N. R.; Frederiksen, H.; Skakkebaek, N. E.; Wulf, H. C.; Andersson, A. M. Int. J. Androl. 2008, 31, 118.   DOI   ScienceOn
22 Tan, B. L. L.; Mohd, M. A. Talanta 2003, 61, 385.   DOI   ScienceOn
23 Yoshimura, Y.; Brock, J. W.; Makino, T.; Nakazawa, H. Anal. Chim. Acta 2002, 458, 331.   DOI   ScienceOn
24 Allmyr, M.; McLachlan, M. S.; Sandborgh-Englund, G.; Adolfsson- Erici, M. Anal. Chem. 2006, 78, 6542.   DOI   ScienceOn
25 Xiaoyun, Y.; Lily, J. T.; Larry, L. N.; Antonia, M. C. Talanta 2008, 76,865.   DOI   ScienceOn