• 제목/요약/키워드: nanosized particles

검색결과 87건 처리시간 4.324초

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V.;Gareev, K.G.;Ionin, S.A.;Ryzhov, V.A.;Bogachev, Yu.V.;Klimenkov, B.D.;Kononova, I.E.;Moshnikov, V.A.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.221-228
    • /
    • 2015
  • Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

Synthesis of Monodispersed Barium Titanate Nanopowders by Alkoxide-Hydroxide Sol-Precipitation Method

  • Yoon, Song-Hak;Kim, Min-Gyu;Shin, Nam-Soo;Kim, In-Sung;Baik, Sung-Gi
    • Journal of the Korean Ceramic Society
    • /
    • 제43권11호
    • /
    • pp.710-714
    • /
    • 2006
  • Barium titanate nanoparticles were synthesized under N$_2$ atmosphere by the hydrolysis and condensation of barium hydroxide octahydrate and titanium (IV) isopropoxide. The synthesized particles were aggregates of nanosized primary particles. The primary particles of about 20-50 nm in diameter became building blocks of larger secondary particles, which are in most cases spherical in shape. The size and morphological evolution of secondary particles are strongly related to the precursor concentration. The observations suggest that formation and control of secondary particles is an essential step in the alkoxidehydroxide sol-precipitation process to obtain monodispersed barium titanate nanopowders.

Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures (나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성)

  • Lee, Wha-Jun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • 제20권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

Synthesis and Characterization of Nanosized MnxFe2O4 Powders by Glycothermal Process

  • Bae, Dong-Sik;Kim, Eun-Jung;Lee, Hae-Won;Han, Kyong-Sop
    • Journal of the Korean Ceramic Society
    • /
    • 제39권10호
    • /
    • pp.903-906
    • /
    • 2002
  • Nanosized $Mn_xFe_2O_4$ powders were prepared in ethylene glycol solution under mild temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The average size and distribution of the synthesized $Mn_xFe_2O_4$ powders was about 20 nm and broad, respectively. The phase of synthesized particles was crystalline reacted at 200${\circ}C$ for 6h. The magnetic properties of the synthesized $Mn_xFe_2O_4$ powders were about 35-60 (emu/g) with superparamagnetic character.

Synthesis of Nanosized TiO$_2$ Powder by Chemical Vapor Condensation Process(1) (화학기상응축법에 의한 TiO$_2$ 나노분말의 합성 (1))

  • 김신영;유지훈;이재성;김종렬;김병기
    • Journal of the Korean Ceramic Society
    • /
    • 제36권7호
    • /
    • pp.742-750
    • /
    • 1999
  • Nanosized TiO2 powders were synthesized using the chemical vapor conduensation (CVC) process with various precursor feeding rates (0.37 and 0.752 ml/min) and oxygen flow rates(1-2slm) conditions and powder characteristics were investigated in terms of formation of nanosized powder varying with the above processing conditions. For this study the main thermodynamic and fluid dynamic factors -supersaturation ratio collision frequency and residence time-were theoretically established and compared to the characteristics of formed TiO2 powder. The loosely combined anatase phase powders (including less than 3%of rutile phase) having 20-30nm crystallite size were obtained at overall conditions. The particle size and th degree of agglomeration for a precursor flow rate of 0.376 ml/min turn out to be smaller than for a flow rate of 0.742ml/min. And the decreasing of particles size and particle size distribution were observed with increasing oxygen flow rate as the residence time and collision frequency were reduced by increasing oxygen flow rate,. It appears that further scrutiny is needed to elucidate the influence of the individual thermodynamic and kinetic parameters mdependently.

  • PDF

Effect of Particle Size on the Solubility and Dispersibility of Endosperm, Bran, and Husk Powders of Rice

  • Lee, Jeong-Eun;Jun, Ji-Yeon;Kang, Wie-Soo;Lim, Jung-Dae;Kim, Dong-Eun;Lee, Kang-Yeol;Ko, Sang-Hoon
    • Food Science and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.833-838
    • /
    • 2008
  • Size effects of rice product powders on physical properties including suspension stability were investigated in this study. Endosperm, bran, and husk powders of rice with different size particles were prepared using the pin crusher or the ultrafine air mill. The physical properties of the powders were examined using particle size analysis, scanning electron microscopy, and spectrophotometry. The peak of the volume-weighted particle distribution of ultrafine endosperm particles was at $5.4\;{\mu}m$ whereas those of the bran and the husk appeared at 65 and $35\;{\mu}m$, respectively. Ultrafine particles of the endosperm and the husks dispersed better than larger-sized particles. As time elapsed, the dispersibility decreased, but the ultrafine particles were precipitated at the slowest rate. Our results suggest that ultrafine particles, including future nanosized particles, provide improved solubility and dispersibility resulting in better stability in the food colloidal suspension.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • 제19권2호
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace (튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석)

  • 배귀남;현정은;이태규;정종수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제20권3호
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.

Effect of Reaction Parameters on Silica Nanoparticles Synthesized by Sol-gel Method (졸-겔법에 의한 단분산 실리카 나노입자 합성에 미치는 반응변수의 영향)

  • Lim, Young-Hyun;Kim, Do Kyung;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • 제23권6호
    • /
    • pp.442-446
    • /
    • 2016
  • The sol-gel method is the simplest method for synthesizing monodispersed silica particles. The purpose of this study is to synthesize uniform, monodisperse spherical silica nanoparticles using tetraethylorthosilicate (TEOS) as the silica precursor, ethanol, and deionized water in the presence of ammonia as a catalyst. The reaction time and temperature and the concentration of the reactants are controlled to investigate the effect of the reaction parameters on the size of the synthesized particles. The size and morphology of the obtained silica particles are investigated using transmission electron microscopy and particle size analysis. The results show that monodispersed silica particles over a size range of 54-504 nm are successfully synthesized by the sol-gel method without using any additional process. The nanosized silica particles can be synthesized at higher TEOS/$H_2O$ ratios, lower ammonia concentrations, and especially, higher reaction temperatures.