• 제목/요약/키워드: nanoporous film

검색결과 55건 처리시간 0.028초

유기실리카와 나노기공형성 수지의 상용성 변화에 의한 나노기공의 구조 변화

  • 차국헌;최연승;김상율;진문영
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.52-52
    • /
    • 2002
  • Recently, nanoporous low-k materials using porogen (pore generating material) template method have gained much attraction due to the feasible advantage of dielectric constant decrease with the increase of porogen content, which is burning out and making air void by thermal curing. In nanoporous thin films, further, control of pore size and its distribution is very important to retain suitable thermal, mechanical and electrical properties. In this study, nanoporous low-k films were prepared with MTMS-BTMSE copolymer and porogen. The effect of interaction of copolymer matrix and porogen on pore size and distribution was comparatively to investigate with molecular structure and end functional group. The characterization of nanoporous thin film prepared was also performed using various techniques including NMR, GPC, Ellipsometer, FE-SEM, TGA, and FT-IR.

  • PDF

Characteristics of Mediated Enzymatic Nitrate Reduction by Gallocyanine-Bound Nanoporous Electrode

  • Kim Seung-Hwan;Song Seung-Hoon;Yoo Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.505-510
    • /
    • 2006
  • A gallocyanine-bound nanoporous titanium dioxide electrode system was investigated to carry out a mediated enzyme reaction. Gallocyanine was bound either directly or through an aminopropylsilane linker to the film of nanoporous titanium dioxide and used as a mediator for nitrate reductase in the mediated enzymatic nitrate reduction. The electrode with the aminopropylsilane linker showed 20% higher efficiency of electron transfer at the same potential than that directly linked. The prepared electrodes showed $0.26{\mu}mol/h$ nitrate reduction at a $100mm^2$ surface of the electrode, and linear current response on nitrate ion concentration up to 1.0 mM, which is very useful as a biosensor of nitrate ion in water.

형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 I (Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film I)

  • 김현정;유재석;박진일
    • 설비공학논문집
    • /
    • 제25권12호
    • /
    • pp.668-673
    • /
    • 2013
  • In this study, specimens with nano-sized porous thin films were manufactured by injecting fluorescence solution into the pores. We intended to find out the difference of the fluorescence intensity in each region of the specimen through an experimental apparatus that makes a temperature field. Before conducting experiments, the optimized manufacturing conditions were determined by analysis of all parameters that influence the emission intensity, and the experiments were carried out with the specimens produced in the optimized conditions. Then, the calibration curves of the fluorescence intensity versus temperature were performed by taking the intensity distributions from the specimen in various temperature fields. The surfaces of specimens were coated with Rhodamine-B (Rh-B) fluorescent dye and measured based on the fluorescence intensity. Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescence dye was absorbed into these porous thin films.

다공성 알루미나 박막을 이용한 금속 나노우물과 나노그물 구조의 박막 제작 (Fabrication of Nanowellstructured and Nanonetstructured Metal Films using Anodic Porous Alumina Film)

  • 노지석;진원배
    • 한국진공학회지
    • /
    • 제15권5호
    • /
    • pp.518-526
    • /
    • 2006
  • 나노 다공성 알루미나 박막을 제작하고 이를 주형으로 사용해서 진공증착에 의해 규칙적으로 배열된 나노우물구조와 나노그물구조의 금속 박막들(알루미늄, 주석, 코발트)을 제작하였다. 원하는 금속물질을 증발시키기 위하여 저항가열 방법을 사용하였으며, 증착은 torr의 기저진공 속에서 수행되었다. 실험결과에 의하면, 나노우물과 나노그물 구조의 박막 중 어떤 구조가 합성되느냐 하는 것은 증착되는 물질의 양에 의해서 큰 영향을 받는다는 사실을 알 수 있었다. 세포의 크기가 100 nm이고 세공 직경이 60 nm인 다공성 알루미나 박막을 사용했을 때는 대략 우물구조를 합성하는데 필요한 질량의 절반이하 정도가 증착되게 되면 그물 구조가 합성되는 경향을 보여주었다.

Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정 (Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal)

  • 김정식;김범준
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

AAO를 이용한 Ni 나노구조체의 자기적 특징 (Magnetic Properties of Ni Nanostructures Made by using Nanoporous Anodic Alumina)

  • 이성구;신상원;이재용;이종한;김태곤;송종한
    • 한국자기학회지
    • /
    • 제14권3호
    • /
    • pp.105-108
    • /
    • 2004
  • 나노크기의 기공을 갖는 AAO(Anodic Aluminum Oxide)를 이용하여 Si 기판 위에 열 증착 방식으로 Ni 나노구조체를 제작하였다. 제작된 나노구조체는 직경과 높이가 80nm정도로 거의 비슷한 원기둥 형태를 보였다. Ni 나노구조체의 자기적 특성은 광자기효과(Magneto-Optic Kerr effect)를 이용하여 측정하였고, 함께 성장시킨 박막(continuous film)과 비교하였다. 종횡비(aspect ratio)가 1 : 1 정도인 나노구조체의 자화용이축은 평면방향으로 자화용이축을 보이는 박막과는 달리 수직자기이방성을 보여주었으며, 수직 및 수평방향으로 자기장을 가하면서 얻은 자기이력곡선(hysteresis loop)으로부터 나노구조체의 포화자기장(saturation field)과 보자력(coercivity)이 박막과는 많은 차이를 보였다. 박막에서 거의 무시할 만한 값을 갖는 수직방향의 자기이력곡선에서 측정된 잔류자화(remanent magnetization) 나노구조체에서는 0.3으로 크게 증가했다.

Structure and Property Analysis of Nanoporous Low Dielectric Constant SiCOH Thin Films

  • 허규용;이문호;이시우;박영희
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.167-169
    • /
    • 2009
  • We have carried out quantitative structure and property analysis of the nanoporous structures of low dielectric constant (low-k) carbon-doped silicon oxide (SiCOH) films, which were deposited with plasma enhanced chemical vapor deposition (PECVD) using vinyltrimethylsilane (VTMS), divinyldimethylsilane (DVDMS), and tetravinylsilane (TVS) as precursor and oxygen as an oxidant gas. We found that the SiCOH film using VTMS only showed well defined spherical nanopores within the film after thermal annealing at $450^{\circ}C$ for 4 h. The average pore radius of the generated nanopores within VTMS SiCOH film was 1.21 nm with narrow size distribution of 0.2. It was noted that thermally labile $C_{x}H_{y}$ phase and Si-$CH_3$ was removed to make nanopore within the film by thermal annealing. Consequently, this induced that decrease of average electron density from 387 to $321\;nm^{-3}$ with increasing annealing temperature up to $450^{\circ}C$ and taking a longer annealing time up to 4 h. However, the other SiCOH films showed featureless scattering profiles irrespective of annealing conditions and the decreases of electron density were smaller than VTMS SiCOH film. Because, with more vinyl groups are introduced in original precursor molecule, films contain more organic phase with less volatile characteristic due to the crosslinking of vinyl groups. Collectively, the presenting findings show that the organosilane containing vinyl group was quite effective to deposit SiCOH/$C_{x}H_{y}$ dual phase films, and post annealing has an important role on generation of pores with the SiCOH film.

  • PDF

형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 II (Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film II)

  • 김현정;유재석;박진일
    • 설비공학논문집
    • /
    • 제25권12호
    • /
    • pp.674-678
    • /
    • 2013
  • We present a non-invasive technique to the measure temperature distribution in nano-sized porous thin films by means of the two-color laser-induced fluorescence (2-LIF) of rhodamine B. The fluorescence induced by the green line of a mercury lamp with the makeup of optical filters was measured on two separate color bands. They can be selected for their strong difference in the temperature sensitivity of the fluorescence quantum yield. This technique allows for absolute temperature measurements by determining the relative intensities on two adequate spectral bands of the same dye. To measure temperature fields, Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescent dye was absorbed into these porous thin films. The calibration curves of the fluorescence intensity versus temperature were measured in a temperature range of $10-60^{\circ}C$, and visualization and measurement of the temperature field were performed by taking the intensity distributions from the specimen for the temperature field.

Texture, Morphology and Photovoltaic Characteristics of Nanoporous F:SnO2 Films

  • Han, Deok-Woo;Heo, Jong-Hyun;Kwak, Dong-Joo;Han, Chi-Hwan;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.93-97
    • /
    • 2009
  • The nanoporous $F:SnO_2$ materials have been prepared through the controlled hydrolysis of fluoro(2-methylbutan-2-oxy)di(pentan-2,4-dionato)tin followed by thermal treatment at $400-550^{\circ}C$. The main IR features include resonances at 660, 620 and 540 cm-1. From the TG-DTG result, three main mass losses of 6.5, 13.3 and 3.8 at 81, 289 and $490^{\circ}C$ are observed between 50 and $650^{\circ}C$ yielding a final residue of 76.0%. The size of Sn $O_2$ nanoparticles rose from 5 nm to 10-12 nm as the temperature of thermal treatment is increased from 400 to $550^{\circ}C$.