Browse > Article

Fabrication of Nanowellstructured and Nanonetstructured Metal Films using Anodic Porous Alumina Film  

Noh, Ji-Seok (Dept. of Material Physics, Dong-A University)
Chin, Won-Bai (Dept. of Material Physics, Dong-A University)
Publication Information
Journal of the Korean Vacuum Society / v.15, no.5, 2006 , pp. 518-526 More about this Journal
Abstract
Nanoporous alumina film was fabricated by anodization of an aluminum sheet. Highly ordered nanowellstructured and nanonets-tructured metal films were fabricated by vacuum evaporation of several metals(Al, Sn, and Co) using the anodic nanoporous alumina film as a template. In this experiment, an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used. The resistance heating method was adopted for evaporating a desired metal, and vapor deposition was carried out under the base pressure of torr. It was founded that whether the structure fabricated by vacuum evaporation is nanowell or nanonet is dependent on the amount of deposited material. When an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used, a nanowell-structured film was fabricated when a sufficient amount of metal was suppled to cover the surface pores. On the other hand, nanonet-structured film was fabricated bellow a half the amount of metal required for nanowell-structured film.
Keywords
Anodization; Porous alumina film; Metal nanowell; Metal nanonet; Template synthesis; Vacuum evaporation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys. 84, 6023(1998)   DOI   ScienceOn
2 R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, Science, 258. 783(1992)   DOI
3 K. Douglas, G. Devaud, N. A. Clark, Science, 257, 642(1992)   DOI
4 J. S. Suh and J. S. Lee, Appl. Phys. Lett., 75, 2047(1999)   DOI   ScienceOn
5 D. D. Sung, M. S. Choo, J. S. Noh, W. B. Chin, and W. S. Yang, Bull. Korean Chem. Soc., 27, 1159(2006)   DOI
6 S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H. L. Hartnagel, Science, 285, 1551(1999)   DOI   ScienceOn
7 C. R. Martin, L. S. Van Dyke, Zhihua Cai, and Wenbin Liang, J. Am. Chem. Soc. 112, 8976(1990)   DOI
8 X. F. Wang and L. D. Zhang, J. Phys. D 34, 418(2001)   DOI   ScienceOn
9 Shufang Yu, Myungchan kang, Naichao Li, Charles R. Martin, Abs. 85, 204th Meeting, $\circledC$2003 The Electrochemical Society
10 K. Haya, S. Sugawara, K. Aral, and S. Selto, J. Chem. Eng. Jpn. 17, 514(1984)   DOI
11 Xiangyang Mei, Marina Blumin, Danny Kim, Zhanghua Wu, Harry E. Ruda, J. Crystal Growth, 251, 253(2003)   DOI   ScienceOn
12 S. C. Minne, Ph. Flueckiger, H. T. Soh, and C. F. Quate, J. Vac. Sci. Technol. B 13, 1380(1995)   DOI
13 H. Masuda and M. Satoh, Jpn. J. Appl. Phys. 35, L126(1996)   DOI   ScienceOn
14 F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrchem. Soc. 100, 411(1953)   DOI
15 S. K. Park, J. S. Noh, D. D. Sung, and W. B. Chin, Curr. Appl. Phys., in press
16 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512(1999)   DOI   ScienceOn