Fabrication of Nanowellstructured and Nanonetstructured Metal Films using Anodic Porous Alumina Film

다공성 알루미나 박막을 이용한 금속 나노우물과 나노그물 구조의 박막 제작

  • 노지석 (동아대학교 신소재물리학과) ;
  • 진원배 (동아대학교 신소재물리학과)
  • Published : 2006.09.01

Abstract

Nanoporous alumina film was fabricated by anodization of an aluminum sheet. Highly ordered nanowellstructured and nanonets-tructured metal films were fabricated by vacuum evaporation of several metals(Al, Sn, and Co) using the anodic nanoporous alumina film as a template. In this experiment, an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used. The resistance heating method was adopted for evaporating a desired metal, and vapor deposition was carried out under the base pressure of torr. It was founded that whether the structure fabricated by vacuum evaporation is nanowell or nanonet is dependent on the amount of deposited material. When an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used, a nanowell-structured film was fabricated when a sufficient amount of metal was suppled to cover the surface pores. On the other hand, nanonet-structured film was fabricated bellow a half the amount of metal required for nanowell-structured film.

나노 다공성 알루미나 박막을 제작하고 이를 주형으로 사용해서 진공증착에 의해 규칙적으로 배열된 나노우물구조와 나노그물구조의 금속 박막들(알루미늄, 주석, 코발트)을 제작하였다. 원하는 금속물질을 증발시키기 위하여 저항가열 방법을 사용하였으며, 증착은 torr의 기저진공 속에서 수행되었다. 실험결과에 의하면, 나노우물과 나노그물 구조의 박막 중 어떤 구조가 합성되느냐 하는 것은 증착되는 물질의 양에 의해서 큰 영향을 받는다는 사실을 알 수 있었다. 세포의 크기가 100 nm이고 세공 직경이 60 nm인 다공성 알루미나 박막을 사용했을 때는 대략 우물구조를 합성하는데 필요한 질량의 절반이하 정도가 증착되게 되면 그물 구조가 합성되는 경향을 보여주었다.

Keywords

References

  1. Xiangyang Mei, Marina Blumin, Danny Kim, Zhanghua Wu, Harry E. Ruda, J. Crystal Growth, 251, 253(2003) https://doi.org/10.1016/S0022-0248(02)02421-1
  2. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H. L. Hartnagel, Science, 285, 1551(1999) https://doi.org/10.1126/science.285.5433.1551
  3. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512(1999) https://doi.org/10.1126/science.283.5401.512
  4. S. C. Minne, Ph. Flueckiger, H. T. Soh, and C. F. Quate, J. Vac. Sci. Technol. B 13, 1380(1995) https://doi.org/10.1116/1.587857
  5. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys. 84, 6023(1998) https://doi.org/10.1063/1.368911
  6. C. R. Martin, L. S. Van Dyke, Zhihua Cai, and Wenbin Liang, J. Am. Chem. Soc. 112, 8976(1990) https://doi.org/10.1021/ja00180a050
  7. R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, Science, 258. 783(1992) https://doi.org/10.1126/science.258.5083.783
  8. K. Haya, S. Sugawara, K. Aral, and S. Selto, J. Chem. Eng. Jpn. 17, 514(1984) https://doi.org/10.1252/jcej.17.514
  9. K. Douglas, G. Devaud, N. A. Clark, Science, 257, 642(1992) https://doi.org/10.1126/science.257.5070.642
  10. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrchem. Soc. 100, 411(1953) https://doi.org/10.1149/1.2781142
  11. X. F. Wang and L. D. Zhang, J. Phys. D 34, 418(2001) https://doi.org/10.1088/0022-3727/34/3/328
  12. J. S. Suh and J. S. Lee, Appl. Phys. Lett., 75, 2047(1999) https://doi.org/10.1063/1.124911
  13. Shufang Yu, Myungchan kang, Naichao Li, Charles R. Martin, Abs. 85, 204th Meeting, $\circledC$2003 The Electrochemical Society
  14. S. K. Park, J. S. Noh, D. D. Sung, and W. B. Chin, Curr. Appl. Phys., in press
  15. D. D. Sung, M. S. Choo, J. S. Noh, W. B. Chin, and W. S. Yang, Bull. Korean Chem. Soc., 27, 1159(2006) https://doi.org/10.5012/bkcs.2006.27.8.1159
  16. H. Masuda and M. Satoh, Jpn. J. Appl. Phys. 35, L126(1996) https://doi.org/10.1143/JJAP.35.L126