Browse > Article

Characteristics of Mediated Enzymatic Nitrate Reduction by Gallocyanine-Bound Nanoporous Electrode  

Kim Seung-Hwan (Interdisciplinary Program for Biochemical Engineering and Biotechnology)
Song Seung-Hoon (Bio-MAX Institute)
Yoo Young-Je (Interdisciplinary Program for Biochemical Engineering and Biotechnology, School of Chemical Engineering, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.4, 2006 , pp. 505-510 More about this Journal
Abstract
A gallocyanine-bound nanoporous titanium dioxide electrode system was investigated to carry out a mediated enzyme reaction. Gallocyanine was bound either directly or through an aminopropylsilane linker to the film of nanoporous titanium dioxide and used as a mediator for nitrate reductase in the mediated enzymatic nitrate reduction. The electrode with the aminopropylsilane linker showed 20% higher efficiency of electron transfer at the same potential than that directly linked. The prepared electrodes showed $0.26{\mu}mol/h$ nitrate reduction at a $100mm^2$ surface of the electrode, and linear current response on nitrate ion concentration up to 1.0 mM, which is very useful as a biosensor of nitrate ion in water.
Keywords
Nitrate reductase; gallocyanine; amperometric; nanoporous; titanium dioxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Kirstein, D., L. Kirstein, F. Scheller, H. Borcherding, J. Ronnenberg, S. Diekmann, and P. Steinru. 1999. Amperometric biosensors on the basis of Pseudomonas stustzeri nitrate reductase. J. Electroanal. Chem. 474: 43-51   DOI   ScienceOn
2 Nazeeruddin, M. K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel. 1993. Conversion of light to electricity by cis-X2Bis (2,2'-bipyridyl- 4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers on nanocrystalline $TiO_2$ electrodes. J. Am. Chem. Soc. 115: 6382-6390   DOI   ScienceOn
3 Regan, B. O. and M. Gratzel. 1991. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal $TiO_2$ films. Nature 353: 737-740   DOI
4 Ferreyra, N. F., S. A. Dassie, and V. M. Solis. 2000. Electroreduction of methyl viologen in the presence of nitrite. Its influence on enzymatic electrodes. J. Electroanal. Chem. 486: 126-132   DOI   ScienceOn
5 Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
6 Meller, R. B., J. Ronnenberg, W. H. Campbell, and S. Diekmann. 1992. Production of nitrate and nitrite in water by immobilized enzymes. Nature 355: 717-719   DOI
7 Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2002. Effect of aeration on denitrification by Ochrobactrum anthropi SY509. Biotechnol. Bioprocess Eng. 7: 352-356   DOI   ScienceOn
8 Sung, D. W., S. H. Song, J. H. Kim, and Y. J. Yoo. 2002. Effect of electron donors on nitrate removal by nitrate and nitrite reductases. Biotechnol. Bioprocess Eng. 7: 112-116   DOI   ScienceOn
9 Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2003. Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509. J. Microbial. Biotechnol. 13: 473-476
10 Phillippot, L. and O. Hokberg. 1999. Dissimilatory nitrate reductase in bacteria. Biochim. Biophys. Acta 1446: 1-23   DOI
11 Zayats, M., A. B. Kharitonov, E. Katz, A. F. Buckmann, and I. Willner. 2000. Biosens. Bioelectr. 15: 671-680   DOI   ScienceOn