• 제목/요약/키워드: nanomaterial

검색결과 175건 처리시간 0.023초

Application of black phosphorus nanodots to live cell imaging

  • Shin, Yong Cheol;Song, Su-Jin;Lee, Yu Bin;Kang, Moon Sung;Lee, Hyun Uk;Oh, Jin-Woo;Han, Dong-Wook
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.352-359
    • /
    • 2018
  • Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

Preparation of Nanomaterial Wettable Powder Formulations of Antagonistic Bacteria from Phellodendron chinense and the Biological Control of Brown Leaf Spot Disease

  • Zeng, Yanling;Liu, Han;Zhu, Tianhui;Han, Shan;Li, Shujiang
    • The Plant Pathology Journal
    • /
    • 제37권3호
    • /
    • pp.215-231
    • /
    • 2021
  • Brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense occurs in a large area in Dayi County, Chengdu City, Sichuan Province, China each year. This outbreak has severely reduced the production of Chinese medicinal plants P. chinense and caused substantial economic losses. The bacterial isolate JKB05 was isolated from the healthy leaves of P. chinense, exhibited antagonistic effects against N. guilinensis and was identified as Bacillus megaterium. The following fermentation medium and conditions improved the inhibitory effect of B. megaterium JKB05 on N. guilinensis: 2% glucose, 0.1% soybean powder, 0.1% KCl, and 0.05% MgSO4; initial concentration 6 × 106 cfu/ml, and a 42-h optimal fermentation time. A composite of 0.1% nano-SiO2 JKB05 improved the thermal stability, acid-base stability and ultraviolet resistance by 16%, 12%, and 38.9%, respectively, and nano-SiO2 was added to the fermentation process. The best formula for the wettable powder was 35% kaolin, 4% polyethylene glycol, 8% Tween, and 2% humic acid. The following quality test results for the wettable powder were obtained: wetting time 87.0 s, suspension rate 80.33%, frequency of microbial contamination 0.08%, pH 7.2, fineness 95.8%, drying loss 1.47%, and storage stability ≥83.5%. A pot experiment revealed that the ability of JKB05 to prevent fungal infections on P. chinense increased considerably and achieved levels of control as high as 94%. The use of nanomaterials significantly improved the ability of biocontrol bacteria to control this disease.

무전해 도금에서 Sn 민감화와 Pd 활성화 공정의 세척 효과에 대한 연구 (A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating)

  • 정승재;장미세;정재원;양상선;권영태
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.511-516
    • /
    • 2022
  • Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn-Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.

Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin

  • Ana Beatriz Vilela Teixeira;Mariana Lima da Costa Valente;Joao Pedro Nunes Sessa;Bruna Gubitoso;Marco Antonio Schiavon;Andrea Candido dos Reis
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권2호
    • /
    • pp.80-92
    • /
    • 2023
  • PURPOSE. This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS. AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS. HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION. The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.

Repair of sports bone injury based on multifunctional nanomaterial particles

  • Dongbai Guo
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.487-501
    • /
    • 2023
  • Nanoparticles have lower size and larger specific surface area, good stability and less toxic and side effects. In recent years, with the development of nanotechnology, its application range has become wider and wider, especially in the field of biomedicine, which has received more and more attention. Bone defect repair materials with high strength, high elasticity and high tissue affinity can be prepared by nanotechnology. The purpose of this paper was to study how to analyze and study the composite materials for sports bone injury based on multifunctional nanomaterials, and described the electrospinning method. In this paper, nano-sized zirconia (ZrO2) filled micro-sized hydroxyapatite (HAP) composites were prepared according to the mechanical properties of bone substitute materials in the process of human rehabilitation. Through material tensile and compression experiments, the performance parameters of ZrO2/HAP composites with different mass fraction ratios were analyzed, the influence of filling ZrO2 particles on the mechanical properties of HAP matrix materials was clarified, and the effect of ZrO2 mass fraction on the mechanical properties of matrix materials was analyzed. From the analysis of the compressive elastic modulus, when the mass fraction of ZrO2 was 15%, the compressive elastic modulus of the material was 1222 MPa, and when 45% was 1672 MPa. From the analysis of compression ratio stiffness, when the mass fraction of ZrO2 was 15%, the compression ratio stiffness was 658.07 MPa·cm3/g, and when it was 45%, the compression ratio stiffness is 943.51MPa·cm3/g. It can be seen that by increasing the mass fraction of ZrO2, the stiffness of the composite material can be effectively increased, and the ability of the material to resist deformation would be increased. Typically, the more stressed the bone substitute material, the greater the stiffness of the compression ratio. Different mass fractions of ZrO2/HAP filling materials can be selected to meet the mechanical performance requirements of sports bone injury, and it can also provide a reference for the selection of bone substitute materials for different patients.

Rich Se Nanoparticles Modified Mo-W18O49 as Enhanced Electrocatalyst for Hydrogen Evolution Reaction

  • Wang, Jun Hui;Tang, Jia-Yao;Fan, Jia-Yi;Meng, Ze-Da;Zhu, Lei;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.57-65
    • /
    • 2022
  • Herein a rich, Se-nanoparticle modified Mo-W18O49 nanocomposite as efficient hydrogen evolution reaction catalyst is reported via hydrothermal synthesized process. In this work, Na2SeSO3 solution and selenium powder are used as Se precursor material. The structure and composition of the nanocomposites are characterized by X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), EDX spectrum analysis and the corresponding element mapping. The improved electrochemical properties are studied by current density, and EIS analysis. The as-prepared Se modified Mo-W18O49 synthesized via Na2SeSO3 is investigated by FE-SEM analysis and found to exhibit spherical particles combined with nanosheets. This special morphology effectively improves the charge separation and transfer efficiency, resulting in enhanced photoelectric behavior compared with that of pure Mo-W18O49. The nanomaterial obtained via Na2SeSO3 solution demonstrates a high HER activity and low overpotential of -0.34 V, allowing it to deliver a current density of 10 mA cm-2.

Generation of Hydrogen Peroxide by Single-Atom Clusters Pd Anchored on t-BaTiO3 for Piezoelectric Degradation of Tetracycline

  • Xin Ni;Yuan Liang;Quanzi Pan;Hengjie Guo;Kai Chen;Bo Zhang;Shaocong Ni;Bin Sheng;Zeda Meng;Shouqing Liu;Won-Chun Oh
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.447-457
    • /
    • 2023
  • Single-atom Pd clusters anchored on t-BaTiO3 material was synthesized using hydrothermal and ultrasonic methods for the effective piezoelectric catalytic degradation of pollutants using vibration energy. XRD patterns of BaTiO3 loaded with monoatomic Pd were obtained before and after calcining, and showed typical cubic-phase BTO. TEM and HAADF-STEM images indicated single-atom Pd clusters were successfully introduced into the BaTiO3. The piezoelectric current density of the prepared Pd-BaTiO3 binary composite was significantly higher than that of the pristine BaTiO3. Under mechanical vibration, the nanomaterial exhibited a tetracycline decomposition rate of ~95 % within 7 h, which is much higher than the degradation rate of 56.7 % observed with pure BaTiO3. Many of the piezo-induced electrons escaped to the Pd-doped BaTiO3 interface because of Pd's excellent conductivity. Single-atom Pd clusters help promote the separation of the piezo-induced electrons, thereby achieving synergistic catalysis. This work demonstrates the feasibility of combining ultrasonic technology with the piezoelectric effect and provides a promising strategy for the development of ultrasonic and piezoelectric materials.

반응성 나노소재 대체율에 따른 시멘트 페이스트의 강도 및 수화특성 (Strength and Hydration Properties of Cement Paste as a Function of Reactive Nanomaterials Replacement Rate)

  • 백철우;최성우;류득현
    • 한국건설순환자원학회논문집
    • /
    • 제12권1호
    • /
    • pp.33-39
    • /
    • 2024
  • 본 연구에서는 나노소재의 콘크리트 혼화재로 사용하기에 적합한지 확인하기 위해 마이크로 실리카 및 흄드 실리카 대체율 변화에 따른 시멘트 페이스트의 기본 특성을 분석하였다. 초고강도용 배합을 참고하여 나노소재 대체율에 따른 시멘트 페이스트의 유동성을 평가와 압축강도 특성을 비교 분석하였다. 반응성 나노소재의 시멘트 수화물과의 관련 특성은 SEM, EDS 분석 이용하여 미세구조를 관찰과 수화 생성물의 구성요소 확인하였다. 본 연구에 사용한 반응성 나노소재는 탭밀도가 0.061~0.264 g/cm3 수준으로 SF 대비 낮게 측정되었다. 마이크로 실리카의 경우 대체율이 증가할수록 우수한 압축강도 특성을 나타냈지만 흄드 실리카는 마이크로 화이트와는 달리 대체율 0.01~0.1 %에서 우수한 압축강도를 확보하였다. 수화특성 분석결과에서도 동일한 경향을 확인할 수 있었다.

용액 공정을 접목한 전기화학 증착 기법을 활용한 금 나노 구조체 제작 (Fabrication of Gold Nanostructures Using Electrochemical Deposition Integrated with Solution Process)

  • 김지희;김동현;강미정
    • 전기화학회지
    • /
    • 제27권3호
    • /
    • pp.81-87
    • /
    • 2024
  • 나노 소재 전극은 바이오/화학 분야에서 분석 성능을 향상시키기 위한 핵심 요인으로 활용되고 있다. 금속 나노 소재를 제작하는 방법으로는 크게 용액 공정과 전기증착 공정이 있다. 용액 공정에서 capping agent를 사용하면 금속 원자의 결합 방향을 통제할 수 있어 특이적 구조의 나노 입자를 얻을 수 있고, 전기증착 공정을 이용하면 전극 표면과 금속 원자 사이의 직접적인 결합이 일어나서 높은 결합력을 기대할 수 있다. 이 공정들은 각각의 장점을 가지고 있으나, 문제점 또한 있어 이를 해결하기 위해 많은 연구가 진행되고 있다. 이 논문에서는 전극용 금속 나노 소재를 제작하는 두 기법의 융합, 그로부터 확보한 나노 구조 전극 및 그것의 전기화학적 특성을 살펴보고, 그러한 나노 구조 전극의 센서로서의 활용 가능성에 대해 이야기하고자 한다.

Carbon nanotube-biomorphic composites and filter application: A Review

  • Jung Gyu Park;Se Young Kim;Insub Han;Ik Jin Kim
    • Journal of Ceramic Processing Research
    • /
    • 제21권2호
    • /
    • pp.170-191
    • /
    • 2020
  • As interest in environmental pollution has increased, research in the field of filtration has been concentrated. While various types of filters have been developed, research on nanomaterial filtration has been limited. Since then, the development of new materials such as carbon nanotubes (CNTs) has accelerated the study of new filters. Especially, CNTs have been among the most attractive materials ever synthesized for the development of nano-technologies. However, there are fundamental technical problems to be solved the development of new CNT composites. One of these problems is the development of a CNTs filter with excellent adsorption behavior and a filter that is capable of filtering a specific substance. In addition, it is necessary to develop a technology to increase the uniform distribution of CNTs, and to reduce the high processing cost of CNT composite production. In general, the chemical pathways for the production of CNTs include hydrocarbon gases, such as methane (CH4) and acetylene (C2H2), through metal nanoparticle catalysts. However, nano-metal particles have a strong coagulation phenomenon at high temperature by catalytic chemical vapor deposition (CCVD) method. In this review, attempts were made by applying three different reaction techniques to form CNTs on biomorphic carbon materials (BCM) coated with catalyst materials to control the shape and size of CNTs. Hierarchical carbon substrates with pore size of 100 ~ 300 ㎛ were developed using carbonization reaction. Linde type A (LTA) zeolite, silicalite-1, and mesoporous SiO2 template crystals were simultaneously synthesized and coated on the BCM by an in-situ hydrothermal process to synthesize high-yield CNTs composites.