Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.02.2021.0020

Preparation of Nanomaterial Wettable Powder Formulations of Antagonistic Bacteria from Phellodendron chinense and the Biological Control of Brown Leaf Spot Disease  

Zeng, Yanling (College of Forestry, Sichuan Agricultural University)
Liu, Han (Ganzi Institute of Forestry Research)
Zhu, Tianhui (College of Forestry, Sichuan Agricultural University)
Han, Shan (College of Forestry, Sichuan Agricultural University)
Li, Shujiang (College of Forestry, Sichuan Agricultural University)
Publication Information
The Plant Pathology Journal / v.37, no.3, 2021 , pp. 215-231 More about this Journal
Abstract
Brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense occurs in a large area in Dayi County, Chengdu City, Sichuan Province, China each year. This outbreak has severely reduced the production of Chinese medicinal plants P. chinense and caused substantial economic losses. The bacterial isolate JKB05 was isolated from the healthy leaves of P. chinense, exhibited antagonistic effects against N. guilinensis and was identified as Bacillus megaterium. The following fermentation medium and conditions improved the inhibitory effect of B. megaterium JKB05 on N. guilinensis: 2% glucose, 0.1% soybean powder, 0.1% KCl, and 0.05% MgSO4; initial concentration 6 × 106 cfu/ml, and a 42-h optimal fermentation time. A composite of 0.1% nano-SiO2 JKB05 improved the thermal stability, acid-base stability and ultraviolet resistance by 16%, 12%, and 38.9%, respectively, and nano-SiO2 was added to the fermentation process. The best formula for the wettable powder was 35% kaolin, 4% polyethylene glycol, 8% Tween, and 2% humic acid. The following quality test results for the wettable powder were obtained: wetting time 87.0 s, suspension rate 80.33%, frequency of microbial contamination 0.08%, pH 7.2, fineness 95.8%, drying loss 1.47%, and storage stability ≥83.5%. A pot experiment revealed that the ability of JKB05 to prevent fungal infections on P. chinense increased considerably and achieved levels of control as high as 94%. The use of nanomaterials significantly improved the ability of biocontrol bacteria to control this disease.
Keywords
Bacillus megaterium; biological control; nanomaterials; Nigrospora guilinensis; Phellodendron chinense;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chen, Y., Lu, W., Guo, Y., Zhu, Y. and Song, Y. 2019. Electrospun gelatin fibers surface loaded ZnO particles as a potential biodegradable antibacterial wound dressing. Nanomaterials (Basel) 9:525.   DOI
2 Chun, J. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78:123-127.   DOI
3 Collaborative International Pesticides Analytical Council. 1970f. MT 59 Sieve analysis. Collaborative International Pesticides Analytical Council. 2016f. MT 59 - Sieve analysis. URL https://www.cipac.org/index.php/s6/477-mt-59-sieve-analysis [8 February 2021].
4 Gangireddygari, V. S. R., Kalva, P. K., Ntushelo, K., Bangeppagari, M., Djami Tchatchou, A. D. and Bontha, R. R. 2017. Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environ. Sci. Eur. 29:11.   DOI
5 Collaborative International Pesticides Analytical Council. 1970c. MT 17 loss in weight. URL https://www.cipac.org/index.php/l2 [8 February 2021].
6 Claus, D. 1992. A standardized Gram staining procedure. World J. Microbiol. Biotechnol. 1992;8:451-452.   DOI
7 Collaborative International Pesticides Analytical Council. 1970a. MT 75 - Determination of pH values (revised method). URL https://cipac.org/index.php/d7 [8 February 2021].
8 Collaborative International Pesticides Analytical Council. 1970b. MT 15 - Suspensibility of wettable powders in water. URL https://www.cipac.org/index.php/mt-15-suspensibility-ofwettable-powders-in-water [8 February 2021].
9 Collaborative International Pesticides Analytical Council. 1970d. MT 46.3 - Accelerated storage procedure. URL https://www.cipac.org/index.php/mt-46-3-accelerated-storageprocedure/562-mt-46-3-accelerated-storage-procedure [8 February 2021].
10 Peano, C., Tala, A., Corti, G., Pasanisi, D., Durante, M., Mita, G., Bicciato, S., De Bellis, G. and Alifano, P. 2012. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb. Cell Fact. 11:32.   DOI
11 He, Y., Jin, Y., Wang, X., Yao, S., Li, Y., Wu, Q., Ma, G., Cui, F. and Liu, H. 2018. An antimicrobial peptide-loaded gelatin/ chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques.. Nanomaterials (Basel) 8:327.   DOI
12 Niu, D.-D., Liu, H.-X., Jiang, C.-H., Wang, Y.-P., Wang, Q.-Y., Jin, H.-L. and Guo, J.-H. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol. Plant-Microbe Interact. 24:533-542.   DOI
13 Hoffmaster, A. R., Ravel, J., Rasko, D. A., Chapman, G. D., Chute, M. D., Marston, C. K., De, B. K., Sacchi, C. T., Fitzgerald, C., Mayer, L. W., Maiden, M. C., Priest, F. G., Barker, M., Jiang, L., Cer, R. Z., Rilstone, J., Peterson, S. N., Weyant, R. S., Galloway, D. R., Read, T. D., Popovic, T. and Fraser, C. M. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. U. S. A. 101:8449-8454.   DOI
14 Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. and Adam, V. 2017. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnology 15:33.   DOI
15 Sekhon, B. S. 2014. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 7:31-53.   DOI
16 Setlow, B., Atluri, S., Kitchel, R., Koziol-Dube, K. and Setlow, P. 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β-type small acid-soluble proteins. J. Bacteriol. 188:3740-3747.   DOI
17 Shadduck, J. A. 1983. Some considerations on the safety evaluation of nonviral microbial pesticides. Bull. World Health Organ. 61:117-128.
18 Slama, H. B., Cherif-Silini, H., Chenari Bouket, A., Qader, M., Silini, A., Yahiaoui, B., Alenezi, F. N., Luptakova, L., Triki, M. A., Vallat, A., Oszako, T., Rateb, M. E. and Belbahri, L. 2019. Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front. Microbiol. 9:3236.   DOI
19 Bogdan, J., Jackowska-Tracz, A., Zarzynska, J. and PlawinskaCzarnak, J. 2015. Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties. Nanoscale Res. Lett. 10:57.   DOI
20 Azam, A., Ahmed, A. S., Oves, M., Khan, M. S. and Memic, A. 2012. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int. J. Nanomedicine 7:3527-3535.
21 Hiradate, S., Yoshida, S., Sugie, H., Yada, H. and Fujii, Y. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693-698.   DOI
22 Liu, Y., Chen, Z., Ng, T. B., Zhang, J., Zhou, M., Song, F., Lu, F. and Liu, Y. 2007. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28:553-559.   DOI
23 Camara, M. C., Campos, E. V. R., Monteiro, R. A., do Espirito Santo Pereira, A., de Freitas Proenca, P. L. and Fraceto, L. F. 2019. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J. Nanobiotechnology 17:100.   DOI
24 Gillis, A., Fayad, N., Makart, L., Bolotin, A., Sorokin, A., Kallassy, M. and Mahillon, J. 2018. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol. Rev. 42:829-856.   DOI
25 Ali, M. A., Ahmed, T., Wu, W., Hossain, A., Hafeez, R., Islam Masum, M. M., Wang, Y., An, Q., Sun, G. and Li, B. 2020. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials (Basel) 10:1146.   DOI
26 Bacon, C. W., Yates, I. E., Hinton, D. M. and Meredith, F. 2001. Biological control of Fusarium moniliforme in maize. Environ. Health Perspect. 109 Suppl 2:325-332.
27 Boukaew, S., Prasertsan, P., Troulet, C. and Bardin, M. 2017. Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl 62:793-803.   DOI
28 Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., Ma, L.-J. and Sessitsch, A. 2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 55:61-83.   DOI
29 Lim, H. A. 2004. Nanotechnology in diagnostics and drug delivery. Med. Chem. Res. 13:401-413.   DOI
30 Bryaskova, R., Pencheva, D., Nikolov, S. and Kantardjiev, T. 2011. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J. Chem. Biol. 4:185-191.   DOI
31 Collaborative International Pesticides Analytical Council. 1970e. MT 53 - Wettability. URL https://www.cipac.org/index.php/e15/544-mt-53-wettability [8 February 2021].
32 Mi, Y., Tan, W., Zhang, J., Wei, L., Chen, Y., Li, Q., Dong, F. and Guo, Z. 2018. Synthesis, characterization, and antifungal property of hydroxypropyltrimethyl ammonium chitosan halogenated acetates. Mar. Drugs 16:315.   DOI
33 Van der Ent, S., Van Wees, S. C. M. and Pieterse, C. M. J. 2009. Jasmonate signaling in plant interactions with resistanceinducing beneficial microbes. Phytochemistry 70:1581-1588.   DOI
34 Yamamoto, S. and Harayama, S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61:1104-1109.   DOI
35 Vettori, C., Gallori, E. and Stotzky, G. 2000. Clay minerals protect bacteriophage PBS1 of Bacillus subtilis against inactivation and loss of transducing ability by UV radiation. Can. J. Microbiol. 46:770-773.   DOI
36 Sundaramoorthy, S., Karthiba, L., Raguchander, T. and Samiyappan, R. 2013. Ecofriendly approaches of potential microbial bioagents in management of sheath rot disease in rice caused by Sarocladium oryzae (Sawada). Plant Pathol. J. (Faisalabad) 12:98-103.   DOI
37 Thomas, V., Herrera-Rimann, K., Blanc, D. S. and Greub, G. 2006. Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl. Environ. Microbiol. 72:2428-2438.   DOI
38 Vazquez-Figueroa, E., Chaparro-Riggers, J. and Bommarius, A. S. 2007. Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. Chembiochem 8:2295-2301.   DOI
39 Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In: Methods for general and molecular bacteriology, eds. by P. Gerhardt, R. G. E. Murray, W. A. Wood and N. R. Krieg, pp. 611-654. American Society for Microbiology, Washington, DC, USA.
40 Storek, K. M., Chan, J., Vij, R., Chiang, N., Lin, Z., Bevers, J., 3rd, Koth, C. M., Vernes, J.-M., Meng, Y. G., Yin, J., Wallweber, H., Dalmas, O., Shriver, S., Tam, C., Schneider, K., Seshasayee, D., Nakamura, G., Smith, P. A., Payandeh, J., Koerber, J. T., Comps-Agrar, L. and Rutherford, S. T. 2019. Massive antibody discovery used to probe structure-function relationships of the essential outer membrane protein LptD. eLife 8:e46258.   DOI
41 Wang, H., Shan, W., Hu, H., Li, Y., Wang, Q., Wang, K. and Bian, F. 2020. Control effect of mixed inoculation of different biocontrol strains on Botrytis cinerea. Chin. J. Biol. Control 36:265-271 (in Chinese).
42 Zaki, O., Weekers, F., Thonart, P., Tesch, E., Kuenemann, P. and Jacques, P. 2020. Limiting factors of mycopesticide development. Biol. Control 144:104220.   DOI
43 Khan, M. R., Mohidin, F. A., Khan, U. and Ahamad, F. 2016. Native Pseudomonas spp. suppressed the root-knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean. Biol. Control 101:159-168.   DOI
44 Crijns, A. P. G., Gerbens, F., Plantinga, A. E. D., Meersma, G. J., de Jong, S., Hofstra, R. M. W., de Vries, E. G. E., van der Zee, A. G., de Bock, G. H. and te Meerman, G. J. 2006. A biological question and a balanced (orthogonal) design: the ingredients to efficiently analyze two-color microarrays with Confirmatory Factor Analysis. BMC Genomics 7:232.   DOI
45 Cromwick, A.-M. and Gross, R. A. 1995. Investigation by NMR of metabolic routes to bacterial γ-poly(glutamic acid) using 13C-labeled citrate and glutamate as media carbon sources. Can. J. Microbiol. 41:902-909.   DOI
46 Zeng, Y., Li, L., Zhu, T., Han, S. and Li, S. 2020. First report of brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense in China. Plant Dis. 104:2518.
47 Zeriouh, H., de Vicente, A., Perez-Garcia, A. and Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ. Microbiol. 16:2196-2211.   DOI
48 Hunter, P. 2009. Fight fire with fire. Can biopesticides fill the void left by banning chemical pesticides and herbicides?. EMBO Rep. 10:433-436.   DOI
49 Johnson, F. H. and Campbell, D. H. 1945. The retardation of protein denaturation by hydrostatic pressure. J. Cell. Comp. Physiol. 26:43-46.   DOI
50 Khan, M. R., Ahamad, F. and Rizvi, T. F. 2019. Effect of nanoparticles on plant pathogens. In: Advances in phytonanotechnology: from synthesis to application, eds. by M. Ghorbanpour and S. H. Wani, pp. 215-240. Academic Press, London, UK.
51 Khan, M. R. and Rizvi, T. F. 2014. Nanotechnology: scope and application in plant disease management. Plant Pathol. J. 13:214-231.   DOI
52 Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S. and Lee, Y. S. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53-58.   DOI
53 Gibreel, A., Sandercock, J. R., Lan, J., Goonewardene, L. A., Zijlstra, R. T., Curtis, J. M. and Bressler, D. C. 2009. Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products. Appl. Environ. Microbiol. 75:1363- 1372.   DOI
54 de Campos, V. E. B., Ricci-Junior, E. and Mansur, C. R. E. 2012. Nanoemulsions as delivery systems for lipophilic drugs. J. Nanosci. Nanotechnol. 12:2881-2890.   DOI
55 El-Naggar, M. E., Abdelsalam, N. R., Fouda, M. M. G., Mackled, M. I., Al-Jaddadi, M. A. M., Ali, H. M., Siddiqui, M. H. and Kandil, E. E. 2020. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials (Basel) 10:739.   DOI
56 Flanagan, J. L., Brodie, E. L., Weng, L., Lynch, S. V., Garcia, O., Brown, R., Hugenholtz, P., DeSantis, T. Z., Andersen, G. L., Wiener-Kronish, J. P. and Bristow, J. 2007. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J. Clin. Microbiol. 45:1954-1962.   DOI
57 Gray, K. M., Banada, P. P., O'Neal, E. and Bhunia, A. K. 2005. Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species. J. Clin. Microbiol. 43:5865-5872.   DOI
58 He, L., Liu, Y., Mustapha, A. and Lin, M. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 166:207-215.   DOI
59 Liu, J., He, Y., Chen, S., Xiao, Y., Hu, M. and Zhong, G. 2014. Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables. PLoS ONE 9:e103558.   DOI
60 Krieg, N. R., Ludwig, W., Whitman, W., Hedlund, B. P., Paster, B. J., Staley, J. T., Ward, N., Brown, D. and Parte, A. 2011. Bergey's manual of systematic bacteriology. Vol. 4. 2nd ed. Springer-Verlag, New York, NY, USA. 949 pp.
61 Park, S., Kim, C., Lee, D., Song, D. H., Cheon, K. C., Lee, H. S., Kim, S. J., Kim, J. C. and Lee, S. Y. 2017. Construction of Bacillus thuringiensis simulant strains suitable for environmental release. Appl. Environ. Microbiol. 83:e00126-17.
62 Mondal, K. K. and Mani, C. 2012. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol. 62:889-893.   DOI
63 Oslizlo, A., Stefanic, P., Vatovec, S., Beigot Glaser, S., Rupnik, M. and Mandic-Mulec, I. 2015. Exploring ComQXPA quorumsensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb. Biotechnol. 8:527-540.   DOI
64 Park, H.-J., Kim, S.-H., Kim, H.-J. and Choi, S.-H. 2006. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J. 22:295-302.   DOI